• Title/Summary/Keyword: proton exchange membranes

Search Result 135, Processing Time 0.022 seconds

Recent Development Trends of Cation Exchange Membrane Materials (양이온교환막 소재 개발 동향)

  • 이충섭;신현수;전지현;정선영;임지원
    • Membrane Journal
    • /
    • v.12 no.1
    • /
    • pp.1-7
    • /
    • 2002
  • Currently, the commercialized cation exchange membranes have the excellent performance and stability, however their costs are very expensive and they are not still optimized for the several application areas. A number of membranenologists are focused to solve the problems on the development of novel membrane to be applicable to each membrane field. The present will deal with the introduction of the existing membrane materials and their performances.

Preparation and Characterization of Graft Copolymer/$TiO_2$ Nanocomposite Polymer Electrolyte Membranes (가지형 공중합체/$TiO_2$ 나노복합 고분자 전해질막의 제조 및 분석)

  • Koh, Jong-Kwan;Roh, Dong-Kyu;Patel, Rajkumar;Shul, Yong-Gun;Kim, Jong-Hak
    • Membrane Journal
    • /
    • v.20 no.1
    • /
    • pp.1-7
    • /
    • 2010
  • A graft copolymer, i.e. poly(vinylidene fluoride-co-chlorotrifluoroethylene )-g-poly(styrene sulfonic acid) (P(VDF-co-CTFE)-g-PSSA) with 47 wt% of PSSA was synthesized via atom transfer radical polymerization (ATRP). This copolymer was combined with titanium isopropoxide (TTIP) to produce graft copolymer/$TiO_2$ nanocomposite membranes via sol-gel process. $TiO_2$ precursor (TTIP) was selectively incorporated into the hydrophilic PSSA domains of the graft copolymer and grown to form $TiO_2$ nanoparticles, as confirmed by FT-IR and UV-visible spectroscopy. Water uptake and ion exchange capacity (IEC) decreased with TTIP contents due to the decrease in number of sulfonic acid in the membranes. At 5 wt% of TTIP, the mechanical properties of membranes increased while maintaining the proton conductivity.

Preparation and Characterization of SPAES/SPVdF-co-HFP Blending Membranes for Polymer Electrolyte Membrane Fuel Cells (고분자 전해질 연료전지용 술폰화된 폴리(아릴렌 이써 설폰)/SPVdF-co-HFP 브렌딩 멤브레인의 제조 및 특성 분석)

  • PARK, CHUL JIN;KIM, AE RHAN;YOO, DONG JIN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.30 no.3
    • /
    • pp.227-236
    • /
    • 2019
  • In this work, preparation and characterizations of hybrid membranes containing sulfonated poly(arylene ether sulfone) (SPES) and sulfonated poly(vinylidene fluoride-co-hexafluoropropylene) (SPVdF-co-HFP) (20, 30 or 40 wt%) were carried out. The structure of hybrid membranes was confirmed using X-ray diffraction (XRD) analysis and the Fourier transform infrared (FT-IR) spectroscopy. The prepared SPAES/SPVdF-30 membrane exhibits higher ionic conductivity of 68.9 mS/cm at $90^{\circ}C$ and 100% RH. Besides, the other studies showed that the hybrid membrane has good oxidation stability, thermal stability, and mechanical stability. Thus, we believe that the prepared hybrid membrane is suitable for the development of membranes for fuel cell applications.

Preparation and Characterization of the Impregnation to Porous Membranes with PVA/PSSA-MA for Fuel Cell Applications (연료전지 응용을 위한 다공성막에 친수성 고분자의 함침을 통한 고내구성 이온교환막의 제조 및 특성 연구)

  • Lee, Bo-Sung;Jung, Sun-Kyoung;Rhim, Ji-Won
    • Polymer(Korea)
    • /
    • v.35 no.4
    • /
    • pp.296-301
    • /
    • 2011
  • This study focuses on the investigation of the impregnation of poly (vinyl alcohol) (PVA) crosslinked with poly(styrene sulfonic acid-co-maleic acid) (PSSA-MA) to porous polyethylene membrane for the fuel cell application. The membranes were characterized by the measurements of the water content, contact angle, FTIR spectra, thermal gravimetric analysis, ion exchange capacity, proton conductivity, methanol permeability and elastic modulus. The existence of hydrophilic moieties in the impregnated membranes was confirmed by contact angle and FTIR measurements. The impregnated PVA/PSSAMA(90:10) membrane exhibited a higher ion exchange capacity (1.2 meq./g dry membrane) than Nafion membrane (0.91 meq./g dry membrane). Through the elastic modulus measurement, the dimensional stability of the resulting membranes was expected to increase higher than the polyethylene membranes. The methanol crossover and water content decreased even if the PSSA-MA content increased due to the reduction of the free volume.

Characteristics of Proton Exchange Membrane Fuel Cells(PEMFC) Membrane and Electrode Assembly(MEA) Using Sulfonated Poly(ether ether ketone) Membrane (sPEEK 막으로 제조한 고분자전해질 연료전지(PEMFC) 막전극합체(MEA)의 특성)

  • Lee, Hye-Ri;Lee, Se-Hoon;Hwang, Byung-Chan;Na, Il-Chai;Lee, Jung-Hun;Oh, Sung-June;Park, Kwon-Pil
    • Korean Chemical Engineering Research
    • /
    • v.54 no.2
    • /
    • pp.181-186
    • /
    • 2016
  • Recently, there are many efforts focused on development of more economical non-fluorinated membranes for use in PEMFCs (Proton Exchange Membrane Fuel Cells). In this study, characteristics of sulfonated Poly(ether ether ketone) (sPEEK) were compared according to degrees of sulfonation (DS), relative humidity, cell temperatures at PEMFC operation condition. I-V polarization curve, hydrogen crossover, electrochemical surface area, membrane resistance and charge transfer resistance were measured. sPEEK membrane showed high performance at high DS, high temperature and high relative humidity, in particular, performance of sPEEK membrane decreased largely due to low ionic conductivity at low DS and low relative humidity.

Synthesis and Characterization of Di and Triblock Copolymers Containing a Naphthalene Unit for Polymer Electrolyte Membranes (고분자전해질 막을 위한 나프탈렌 단위를 포함하는 디 및 트리 블록공중합체의 합성 및 특성분석)

  • KIM, AERHAN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.27 no.6
    • /
    • pp.660-669
    • /
    • 2016
  • A fluorinated-sulfonated, hydrophobic-hydrophilic copolymer was planed subsequently synthesized using typical nucleophilic substitution polycondensation reaction. A novel AB and ABA (or BAB) block copolymers were synthesized using sBCPSBP (sulfonated 4,4'-bis[4-chlorophenyl)sulfonyl]-1,1'-biphenyl), DHN (1,5-dihydroxynaphthalene), DFBP (decafluorobiphenyl) and HFIP (4,4'-hexafluoroisopropylidenediphenol). All block copolymers were easily cast and made into clear films. The structure and synthesized copolymers and corresponding membranes were analyzed using GPC (gel permeation chromatography), $^1H$-NMR ($^1H$ nuclear magnetic resonance) and FT-IR (Fourier transform infrared). TGA (Thermogravimetric analysis) and DSC (differential scanning calorimetry) analysis showed that the prepared membranes were thermally stable, so that elevated temperature fuel cell operation would be possible. Hydrophobic/hydrophilic phase separation and clear ionic aggregate block morpology was confirmed in both triblock and diblock copolymer in AFM (atomic force microscopy), which may be highly related to their proton transport ability. A sulfonated BAB triblock copolymer membrane with an ion-exchange capacity (IEC) of 0.6 meq/g has a maximum ion conductivity of 40.3 mS/cm at $90^{\circ}C$ and 100% relative humidity.

Organic-inorganic Nano Composite Membranes of Sulfonated Poly(Ether Sulfone-ketone) Copolymer and $SiO_2$ for Fuel Cell Application

  • Lee, Dong-Hoon;Park, Hye-Suk;Seo, Dong-Wan;Kim, Whan-Gi
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.487-488
    • /
    • 2006
  • Novel bisphenol-based wholly aromatic poly(ether sulfone-ketone) copolymer containing pendant sulfonate groups were prepared by direct aromatic nucleophilic substitution polycondensation of 4,4-difluorobenzophenone, 2,2'-disodiumsulfonyl-4,4'-fluorophenylsulfone (40mole% of bisphenol A) and bisphenol A. Polymerization proceeded quantitatively to high molecular weight in N-methyl-2-pyrrolidinone at $180^{\circ}C$. Organic-inorganic composite membranes were obtained by mixing organic polymers with hydrophilic $SiO_2$ (ca. 20nm) obtained by sol-gel process. The polymer and a series of composite membranes were studied by FT-IR, $^1HNMR$, differential scanning calorimetry (DSC) and thermal stability. The proton conductivity as a function of temperature decreased as $SiO_2$ content increased, but methanol permeability decreased. The nano composite membranes were found to posse all requisite properties; Ion exchange capacity (1.2meq./g), glass transition temperatures $(164-183\;^{\circ}C)$, and low affinity towards methanol $(4.63-1.08{\times}10^{-7}\;cm^2/S)$.

  • PDF

The Effect of Membrane Thickness on Durability and Performance of Proton Exchange Membrane Fuel Cell (고분자 전해질 연료전지의 전해질 막 두께가 내구성과 성능에 미치는 영향)

  • Hwang, Byungchan;Lee, Hyeri;Park, Kwonpil
    • Korean Chemical Engineering Research
    • /
    • v.55 no.4
    • /
    • pp.473-477
    • /
    • 2017
  • The polymer membrane of proton exchange membrane fuel cell (PEMFC) has a great influence on PEMFC performance and durability. In this study, hydrogen permeability, fluorine emission rate (FER), lifetime, and performance of Nafion membranes with different thicknesses were measured to investigate the effect of thickness of polymer membrane on performance and durability. The relationship between membrane thickness and lifetime was obtained from the relationships between hydrogen permeability and membrane thickness, hydrogen permeability and FER, FER and lifetime. As the membrane became thicker, the hydrogen permeability and FER decreased and the lifetime increased. On the other hand, the performance decreased with increasing membrane resistance. The membrane thickness range satisfying both performance and durability was 25 to $28{\mu}m$.

Characterization of Sulfonated Ploy(aryl ether sulfone) Membranes Impregnated with Sulfated $ZrO_2$ (Sulfated $ZrO_2$를 함침한 SPAES 연료전지막의 특성 평가)

  • Kim, Mi-Nai;Choi, Young-Woo;Kim, Tae-Young;Lee, Mi-Soon;Kim, Chang-Soo;Yang, Tae-Hyun;Nam, Ki-Seok
    • Membrane Journal
    • /
    • v.21 no.1
    • /
    • pp.30-38
    • /
    • 2011
  • Composite membranes based on sulfonated poly(aryl ether) sulfone (SPAES) with different sulfated zirconia nanoparticles ($s-ZrO_2$) ratio are synthesized and investigated for the improvement of the hydration and the proton conductivity at high temperature and no humidification for fuel cell applications. X-ray diffraction technique is employed to characterize the structure and the size of $s-ZrO_2$ nanoparticles. The sulfation effect of $s-ZrO_2$ nanoparticles is verified by FT-IR analysis. The properties of the SPAES composite membranes with the various $s-ZrO_2$ ratio are evaluated by ion exchange capacity and water content. The proton conductivities of the composite membranes are estimated at room temperature with full hydration and at the various high temperature without external humidification. The composite membrane with 5 wt% $s-ZrO_2$ shows the highest proton conductivity. The proton conductivities are $0.9292\;S\;cm^{-1}$ at room temperature with full hydration and $0.0018\;S\;cm^{-1}$ at $120^{\circ}C$ without external humidification, respectively.

Electrochemical and Mechanical Characteristics of Covalently Cross-Linked SPEEK Polymer Electrolyte Membrane for Water Electrolysis (수전해용 공유가교 SPEEK 고분자 전해질 막의 전기 화학적 및 기계적 특성)

  • Kim, Kyung-Eon;Jang, In-Young;Kweon, Oh-Hwan;Hwang, Yong-Koo;Moon, Sang-Bong;Kang, An-Soo
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.18 no.4
    • /
    • pp.391-398
    • /
    • 2007
  • The covalently cross-linked sulfonated polyetheretherketone (CL-SPEEK) membrane was prepared by four-step synthesis of sulfonation-sulfochlorination, partial reduction, lithiation, and cross-linking, and its electrochemical and mechanical properties were investigated for water electrolysis application. The prepared ion exchange membranes showed good electrochemical and mechanical properties; proton conductivity of 0.116 S/cm at $80^{\circ}C$, water uptake of 44.6%, ion exchange capacity of 1.75 meq/g-dry-memb., tensile strength of 64.25 MPa and elongation of 61.11%. The membrane electrode assembly (MEA) with homemade membranes were prepared by non-equilibrium impregnation-reduction (I-R) method. Especially, the electrochemical surface area (ESA) and roughness factor of CL-SPEEK electrolyte by cyclic voltammetry method were 23.46 $m^2/g$ and 307.3 $cm^2-Pt/cm^2$, respectively. The prepared MEA was used in the unit cell of water electrolysis and the cell voltage was 1.81 V at 1 A/$cm^2$ and $80^{\circ}C$, with platinum loadings of 1.31 mg/$cm^2$.