• 제목/요약/키워드: proteomic analyses

검색결과 54건 처리시간 0.025초

Proteomic Analysis of Proteins of Weissella confusa 31 Affected by Bile Salts

  • Lee, Kang Wook;Lee, Seung-Gyu;Han, Nam Soo;Kim, Jeong-Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • 제22권10호
    • /
    • pp.1432-1440
    • /
    • 2012
  • Weissella confusa 31, an isolate from human feces, possesses desirable properties as a probiotic strain, including bile salt resistance. W. confusa 31 is not inhibited by bile salts up to 0.3% concentration. Proteins affected by bile salts (0.05%) were examined by 2-D gel electrophoresis. Our proteomic analyses revealed that the intensities of 29 spots were changed, where 17 increased (including 2 spots observed only under the bile salts stress conditions) and 12 decreased. Proteins were identified by MALDI-TOF mass spectrometry. Proteins increased in the band intensities included adenylate kinase (12.75-fold increase), Clp-like ATP-dependent protease (11.91-fold), 6-phosphogluconate dehydrogenase (10.35-fold), and HSP 70 (5.07-fold). Some of the increased or decreased proteins are also known to be involved in other types of stress responses.

Comparing Protein Expression in Erwinia amylovora Strain TS3128 Cultured under Three Sets of Environmental Conditions

  • Lee, Jongchan;Choi, Junhyeok;Lee, Jeongwook;Cho, Yongmin;Kang, In-Jeong;Han, Sang-Wook
    • The Plant Pathology Journal
    • /
    • 제38권4호
    • /
    • pp.410-416
    • /
    • 2022
  • Erwinia amylovora, the causal agent of fire-blight disease in apple and pear trees, was first isolated in South Korea in 2015. Although numerous studies, including omics analyses, have been conducted on other strains of E. amylovora, studies on South Korean isolates remain limited. In this study, we conducted a comparative proteomic analysis of the strain TS3128, cultured in three media representing different growth conditions. Proteins related to virulence, type III secretion system, and amylovoran production, were more abundant under minimal conditions than in rich conditions. Additionally, various proteins associated with energy production, carbohydrate metabolism, cell wall/membrane/envelope biogenesis, and ion uptake were identified under minimal conditions. The strain TS3128 expresses these proteins to survive in harsh environments. These findings contribute to understanding the cellular mechanisms driving its adaptations to different environmental conditions and provide proteome profiles as reference for future studies on the virulence and adaptation mechanisms of South Korean strains.

Identification of the novel substrates for caspase-6 in apoptosis using proteomic approaches

  • Cho, Jin Hwa;Lee, Phil Young;Son, Woo-Chan;Chi, Seung-Wook;Park, Byoung Chul;Kim, Jeong-Hoon;Park, Sung Goo
    • BMB Reports
    • /
    • 제46권12호
    • /
    • pp.588-593
    • /
    • 2013
  • Apoptosis, programmed cell death, is a process involved in the development and maintenance of cell homeostasis in multicellular organisms. It is typically accompanied by the activation of a class of cysteine proteases called caspases. Apoptotic caspases are classified into the initiator caspases and the executioner caspases, according to the stage of their action in apoptotic processes. Although caspase-3, a typical executioner caspase, has been studied for its mechanism and substrates, little is known of caspase-6, one of the executioner caspases. To understand the biological functions of caspase-6, we performed proteomics analyses, to seek for novel caspase-6 substrates, using recombinant caspase-6 and HepG2 extract. Consequently, 34 different candidate proteins were identified, through 2-dimensional electrophoresis/MALDI-TOF analyses. Of these identified proteins, 8 proteins were validated with in vitro and in vivo cleavage assay. Herein, we report that HAUSP, Kinesin5B, GEP100, SDCCAG3 and PARD3 are novel substrates for caspase-6 during apoptosis.

Gene Expression Analyses of Mutant Flammulina velutipes (Enokitake Mushroom) with Clogging Phenomenon

  • Ju-Ri Woo;Doo-Ho Choi;Muhammed Taofiq Hamza;Kyung-Oh Doh;Chang-Yoon Lee;Yeon-Sik Choo;Sangman Lee;Jong-Guk Kim;Heeyoun Bunch;Young-Bae Seu
    • Mycobiology
    • /
    • 제50권5호
    • /
    • pp.366-373
    • /
    • 2022
  • Regulation of proper gene expression is important for cellular and organismal survival, maintenance, and growth. Abnormal gene expression, even for a single critical gene, can thwart cellular integrity and normal physiology to cause diseases, aging, and death. Therefore, gene expression profiling serves as a powerful tool to understand the pathology of diseases and to cure them. In this study, the difference in gene expression in Flammulina velutipes was compared between the wild type (WT) mushroom and the mutant one with clogging phenomenon. Differentially expressed transcripts were screened to identify the candidate genes responsible for the mutant phenotype using the DNA microarray analysis. A total of 88 genes including 60 upregulated and 28 downregulated genes were validated using the real-time quantitative PCR analysis. In addition, proteomic differences between the WT and mutant mushroom were analyzed using two-dimensional gel electrophoresis and matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF). Interestingly, the genes identified by these genomic and proteomic analyses were involved in stress response, translation, and energy/sugar metabolism, including HSP70, elongation factor 2, and pyruvate kinase. Together, our data suggest that the aberrant expression of these genes attributes to the mutant clogging phenotype. We propose that these genes can be targeted to foster normal growth in F. velutipes.

Proteomic Analysis of Erythritol-Producing Yarrowia lipolytica from Glycerol in Response to Osmotic Pressure

  • Yang, Li-Bo;Dai, Xiao-Meng;Zheng, Zhi-Yong;Zhu, Li;Zhan, Xiao-Bei;Lin, Chi-Chung
    • Journal of Microbiology and Biotechnology
    • /
    • 제25권7호
    • /
    • pp.1056-1069
    • /
    • 2015
  • Osmotic pressure is a critical factor for erythritol production with osmophilic yeast. Protein expression patterns of an erythritol-producing yeast, Yarrowia lipolytica, were analyzed to identify differentially-expressed proteins in response to osmotic pressure. In order to analyze intracellular protein levels quantitatively, two-dimensional gel electrophoresis was performed to separate and visualize the differential expression of the intracellular proteins extracted from Y. lipolytica cultured under low (3.17 osmol/kg) and high (4.21 osmol/kg) osmotic pressures. Proteomic analyses allowed identification of 54 differentially-expressed proteins among the proteins distributed in the range of pI 3-10 and 14.4-97.4 kDa molecular mass between the osmotic stress conditions. Remarkably, the main proteins were involved in the pathway of energy, metabolism, cell rescue, and stress response. The expression of such enzymes related to protein and nucleotide biosynthesis was inhibited drastically, reflecting the growth arrest of Y. lipolytica under hyperosmotic stress. The improvement of erythritol production under high osmotic stress was due to the significant induction of a range of crucial enzymes related to polyols biosynthesis, such as transketolase and triosephosphate isomerase, and the osmotic stress responsive proteins like pyridoxine-4-dehydrogenase and the AKRs family. The polyols biosynthesis was really related to an osmotic response and a protection mechanism against hyperosmotic stress in Y. lipolytica. Additionally, the high osmotic stress could also induce other cell stress responses as with heat shock and oxidation stress responses, and these responsive proteins, such as the HSPs family, catalase T, and superoxide dismutase, also had drastically increased expression levels under hyperosmotic pressure.

Elucidation of the Inhibitory Mechanisms of Nipponoparmelia laevior Lichen Extract against Influenza A (H1N1) Virus through Proteomic Analyses

  • Cuong, Tran Van;Cho, Se-Young;Kwon, Joseph;Kim, Duwoon
    • Journal of Microbiology and Biotechnology
    • /
    • 제29권7호
    • /
    • pp.1155-1164
    • /
    • 2019
  • Lichens contain diverse bioactive secondary metabolites with various chemical and biological properties, which have been widely studied. However, details of the inhibitory mechanisms of their secondary metabolites against influenza A virus (IAV) have not been documented. Here, we investigated the antiviral effect of lichen extracts, obtained from South Korea, against IAV in MDCK cells. Of the lichens tested, Nipponoparmelia laevior (LC24) exhibited the most potent inhibitory effect against IAV infection. LC24 extract significantly increased cell viability, and reduced apoptosis in IAV-infected cells. The LC24 extract also markedly reduced (~ 3.2 log-fold) IAV mRNA expression after 48 h of infection. To understand the antiviral mechanism of LC24 against IAV, proteomic (UPLC-$HDMS^E$) analysis was performed to compare proteome modulation in IAV-infected (V) vs. mock (M) and LC24+IAV (LCV) vs. V cells. Based on Ingenuity Pathway Analysis (IPA), LC24 inhibited IAV infection by modulating several antiviral-related genes and proteins (HSPA4, HSPA5, HSPA8, ANXA1, ANXA2, $HIF-1{\alpha}$, AKT1, MX1, HNRNPH1, HNRNPDL, PDIA3, and VCP) via different signaling pathways, including $HIF-1{\alpha}$ signaling, unfolded protein response, and interferon signaling. These molecules were identified as the specific biomarkers for controlling IAV in vitro and further confirmation of their potential against IAV in vivo is required. Our findings provide a platform for further studies on the application of lichen extracts against IAV.

Bioinformatics in the Post-genome Era

  • Yu, Ung-Sik;Lee, Sung-Hoon;Kim, Young-Joo;Kim, Sang-Soo
    • BMB Reports
    • /
    • 제37권1호
    • /
    • pp.75-82
    • /
    • 2004
  • Recent years saw a dramatic increase in genomic and proteomic data in public archives. Now with the complete genome sequences of human and other species in hand, detailed analyses of the genome sequences will undoubtedly improve our understanding of biological systems and at the same time require sophisticated bioinformatic tools. Here we review what computational challenges are ahead and what are the new exciting developments in this exciting field.

Rhizosphere Communication: Quorum Sensing by the Rhizobia

  • He, Xuesong;Fuqua, Clay
    • Journal of Microbiology and Biotechnology
    • /
    • 제16권11호
    • /
    • pp.1661-1677
    • /
    • 2006
  • Rhizobium and related genera are soil bacteria with great metabolic plasticity. These microorganisms survive in many different environments and are capable of eliciting the formation of nitrogen-fixing nodules on legumes. The successful establishment of symbiosis is precisely regulated and requires a series of signal exchanges between the two partners. Quorum sensing (QS) is a prevalent form of population density-dependent gene regulation. Recently, increasing evidence indicates that rhizobial quorum sensing provides a pervasive regulatory network, which plays a more generalized role in the physiological activity of free-living rhizobia, as well as during symbiosis. Several rhizobia utilize multiple, overlapping quorum sensing systems to regulate diverse properties, including conjugal transfer and copy number control of plasmids, exopolysaccharide biosynthesis, rhizosphere-related functions, and cell growth. Genomic and proteomic analyses have begun to reveal the wide range of functions under quorum-sensing control.

출산 후 경과한 날에 따른 한국인 산모의 모유 단백체 분석 (Proteomic analysis of Korean mothers' human milk at different lactation stages; postpartum 1, 3, and 6 weeks)

  • 박종문;이후근;송승현;한원호;김미정;이주현;강남미
    • 분석과학
    • /
    • 제30권6호
    • /
    • pp.348-354
    • /
    • 2017
  • 이 연구는 출산 후 1, 3, 6주가 경과한 산모에서 얻은 모유의 단백체 발현 양상과 과 발현 단백질을 검출하는 것을 목적으로 하였다. 샷 건 정량 단백체 분석법을 이용하여 모유 중의 단백질을 동정하였고, 각 수유단계 간에 정량적 비교를 하였다. 각 주의 모유 샘플은 두 명의 산모로부터 얻어진 모유를 혼합하였고, 각 샘플 마다 3회 반복 실험을 하였다. Casein은 모유 내에 가장 많이 존재하는 단백질로서 실험의 정확성을 위하여 제거하였고, 트립신을 이용한 절편 화로 모유 단백질들을 펩타이드로 변환하였다. 처리된 펩타이드들은 역상 C18 미세관 크로마토그래피 및 이온-트랩 질량분석기를 이용하여 분석하였으며, Spectra Counting으로 단백질의 정량적 비교를 하였다. 각 샘플 당, 80-109 개의 단백질을 중복 제거한 후 동정하였다. 당화 단백질, metabolic enzyme, 및 lactoferrin, Carboxylic ester hydrolase, Clusterin을 포함하는 chaperon 효소들이 주로 검출되었다. 각 반복실험에서 재현성 있게 검출되는 63개의 단백질에 대한 정량적 비교분석 결과 25개의 단백질이 통계적으로 유의하게 수유단계에 따라 변화하는 것을 확인할 수 있었고, 특히 Ig lambda-7 chain C region과 Tenascin은 시간에 따라 현저하게 감소하였다. 향후 이와 같은 수유 단계에 따른 모유 내 단백의 변화가 생리적으로 가지는 의미에 관하여 추가적인 연구가 필요하다 생각된다.

Xiang Study: an association of breastmilk composition with maternal body mass index and infant growth during the first 3 month of life

  • Peng, Xuyi;Li, Jie;Yan, Shuyuan;Chen, Juchun;Lane, Jonathan;Malard, Patrice;Liu, Feitong
    • Nutrition Research and Practice
    • /
    • 제15권3호
    • /
    • pp.367-381
    • /
    • 2021
  • BACKGROUND/OBJECTIVES: This study aimed to establish a mother and child cohort in the Chinese population, and investigate human breastmilk (HBM) composition and its relationship with maternal body mass index (BMI) and infant growth during the first 3 mon of life. SUBJECTS/METHODS: A total of 101 Chinese mother and infant pairs were included in this prospective cohort. Alterations in the milk macronutrients of Chinese mothers at 1 mon (T1), 2 mon (T2), and 3 mon (T3) lactation were analyzed. HBM fatty acid (FA) profiles were measured by gas chromatography (GC), and HBM proteomic profiling was achieved by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry (MS). RESULTS: During the first 3 mon of lactation (P < 0.05), significant decreases were determined in the levels of total energy, fat, protein, and osteopontin (OPN), as well as ratios of long-chain saturated FA (including C16:0, C22:0 and C24:0), monounsaturated FA (including C16:1), and n-6 poly unsaturated FA (PUFA) (including C20:3n-6 and C20:4n-6, and n-6/n-3). Conversely, butyrate, C6:0 and n-3 PUFA C18:3n-3 (α-linolenic acid, ALA) were significantly increased during the first 3 mon (P < 0.05). HBM proteomic analyses distinguished compositional protein differences over time (P = 0.001). Personalized motherinfant analyses demonstrated that HBM from high BMI mothers presented increased total energy, fat, protein and OPN, and increased content of n-6 PUFA (including C18:3n-6, C20:3n-6 and n-6/n-3 ratio) as compared with low BMI mothers (P < 0.05). Furthermore, BMI of the mothers positively correlated with the head circumference (HC) of infants as well as the specific n-6 PUFA C20:3n-6 over the 3 time points examined. Infant HC was negatively associated with C18:0. CONCLUSION: This study provides additional evidence to the Chinese HBM database, and further knowledge of FA function. It also helps to establish future maternal strategies that support the healthy growth and development of Chinese infants.