• 제목/요약/키워드: proteolytic system

검색결과 81건 처리시간 0.026초

Aging mechanism for improving the tenderness and taste characteristics of meat

  • Seon-Tea Joo;Eun-Yeong Lee;Yu-Min Son;Md. Jakir Hossain;Chan-Jin Kim;So-Hee Kim;Young-Hwa Hwang
    • Journal of Animal Science and Technology
    • /
    • 제65권6호
    • /
    • pp.1151-1168
    • /
    • 2023
  • Tenderness and taste characteristics of meat are the key determinants of the meat choices of consumers. This review summarizes the contemporary research on the molecular mechanisms by which postmortem aging of meat improves the tenderness and taste characteristics. The fundamental mechanism by which postmortem aging improves the tenderness of meat involves the operation of the calpain system due to apoptosis, resulting in proteolytic enzyme-induced degradation of cytoskeletal myofibrillar proteins. The improvement of taste characteristics by postmortem aging is mainly explained by the increase in the content of taste-related peptides, free amino acids, and nucleotides produced by increased hydrolysis activity. This review improves our understanding of the published research on tenderness and taste characteristics of meat and provides insights to improve these attributes of meat through postmortem aging.

Nano-scale Proteomics Approach Using Two-dimensional Fibrin Zymography Combined with Fluorescent SYPRO Ruby Dye

  • Choi, Nack-Shick;Yoo, Ki-Hyun;Yoon, Kab-Seog;Maeng, Pil-Jae;Kim, Seung-Ho
    • BMB Reports
    • /
    • 제37권3호
    • /
    • pp.298-303
    • /
    • 2004
  • In general, a SYPRO Ruby dye is well known as a sensitive fluorescence-based method for detecting proteins by one-or two-dimensional SDS-PAGE (1-DE or 2-DE). Based on the SYPRO Ruby dye system, the combined two-dimensional fibrin zymography (2-D FZ) with SYPRO Ruby staining was newly developed to identify the Bacillus sp. proteases. Namely, complex protein mixtures from Bacillus sp. DJ-4, which were screened from Doen-Jang (Korean traditional fermented food), showed activity on the zymogram gel. The gel spots on the SYPRO Ruby gel, which corresponded to the active spots showing on the 2-D FZ gel, were analyzed by a matrix-assisted laser desorption ionization time of flight (MALDI-TOF) mass spectrometric analysis. Five intracellular fibrinolytic enzymes of Bacillus sp. DJ-4 were detected through 2-D FZ. The gel spots on the SYPRO Ruby dye stained 2-D gel corresponding to 2-D FZ were then analyzed by MALID TOF MS. Three of the five gel spots proved to be quite similar to the ATP-dependent protease, extracellular neutral metalloprotease, and protease of Bacillus subtilis. Also, the extracellular proteases of Bacillus sp. DJ-4 employing this combined system were identified on three gels (e.g., casein, fibrin, and gelatin) and the proteolytic maps were established. This combined system of 2-D zymography and SYPRO Ruby dye should be useful for searching the specific protease from complex protein mixtures of many other sources (e.g., yeast and cancer cell lines).

미강의 산화 지질이 단백질과 효소의 활성에 미치는 영향에 관한 연구 (Effect of Peroxidized Lipid on the Protein Isolate and Protease Activity of Rice Bran)

  • 송영옥;최홍식
    • 한국식품과학회지
    • /
    • 제22권5호
    • /
    • pp.590-595
    • /
    • 1990
  • 미강으로부터 추출한 단백질과 부분 정제한 단백 분해효소에 미강 지질을 산패시킨 과산화지질 및 이들의 분해산물을 반응시킨 model system에서 아미노산과 효소활성의 변화를 살펴보았다. Protein isolate의 아미노산 조성은 반응 후 현저히 파괴되었으며, 특히 염용성 protein isolate의 경우 90% 이상의 파괴가 관찰되었다. 아미노산 중 aspartic acid, cystine, glutamic acid, histidine, methionine, phynylalanine, 그리고 valine 등은 현저히 감소되었다. Protease 활성의 감소는 formaldehyde와의 반응에서 가장 크게 나타났으며, formic acid, 미강의 과산화지방질, 그리고 미강 산화지질의 hydroperoxide의 순으로 영향을 받았다. 미강 protease 활성 저해에 미치는 영향은 과산화 지방질의 2차 생성물의 영향이 1차 생성물의 영향보다 현저하였다.

  • PDF

Vibrio vulnificus Metalloprotease VvpE has no Direct Effect on Iron-uptake from Human Hemoglobin

  • Sun, Hui-Yu;Han, Song-Iy;Choi, Mi-Hwa;Kim, Seong-Jung;Kim, Choon-Mee;Shin, Sung-Heui
    • Journal of Microbiology
    • /
    • 제44권5호
    • /
    • pp.537-547
    • /
    • 2006
  • This study was designed to determine whether or not Vibrio vulnificus metalloprotease VvpE can promote iron uptake via the proteolytic cleavage of human hemoglobin. We found that V. vulnificus utilized hemoglobin as an iron source more efficiently via the vulnibactin-mediated iron-uptake system than via the HupA-mediated iron-uptake system and, of the proteases produced by V. vulnificus, VvpE was found to be the only protease capable of destroying hemoglobin. However, VvpE expression, on both the transcriptional and protein levels, was suppressed in iron-limited media. However, vvpE transcription, but not extracellular VvpE production, was reactivated by the addition of hemoglobin or inorganic iron into iron-limited media. Moreover, vvpE transcription began only in the late growth phase when V. vulnificus had already consumed most of the iron for growth. In addition, neither vvpE mutation nor in trans vvpE complementation affected the ability of V. vulnificus to acquire iron or to grow in iron-limited media or in cirrhotic ascites containing hemoglobin. Hemoglobin added into iron-limited media was not destroyed, but gradually formed an insoluble aggregate during culture; this aggregation of hemoglobin occurred regardless of vvpE mutation or complementation. These results indicate that VvpE is not required for efficient iron uptake from hemoglobin. On the contrary, hemoglobin or iron is required for efficient vvpE transcription. In addition, a discrepancy exists between vvpE transcription and extracellular VvpE production in iron-limited media containing inorganic iron or hemoglobin, which suggests that additional unknown posttranscriptional events may be involved in the extracellular production of VvpE.

Production of Biopharmaceuticals in E. coli: Current Scenario and Future Perspectives

  • Baeshen, Mohammed N.;Al-Hejin, Ahmed M.;Bora, Roop S.;Ahmed, Mohamed M. M.;Ramadan, Hassan A. I.;Saini, Kulvinder S.;Baeshen, Nabih A.;Redwan, Elrashdy M.
    • Journal of Microbiology and Biotechnology
    • /
    • 제25권7호
    • /
    • pp.953-962
    • /
    • 2015
  • Escherichia coli is the most preferred microorganism to express heterologous proteins for therapeutic use, as around 30% of the approved therapeutic proteins are currently being produced using it as a host. Owing to its rapid growth, high yield of the product, costeffectiveness, and easy scale-up process, E. coli is an expression host of choice in the biotechnology industry for large-scale production of proteins, particularly non-glycosylated proteins, for therapeutic use. The availability of various E. coli expression vectors and strains, relatively easy protein folding mechanisms, and bioprocess technologies, makes it very attractive for industrial applications. However, the codon usage in E. coli and the absence of post-translational modifications, such as glycosylation, phosphorylation, and proteolytic processing, limit its use for the production of slightly complex recombinant biopharmaceuticals. Several new technological advancements in the E. coli expression system to meet the biotechnology industry requirements have been made, such as novel engineered strains, genetically modifying E. coli to possess capability to glycosylate heterologous proteins and express complex proteins, including full-length glycosylated antibodies. This review summarizes the recent advancements that may further expand the use of the E. coli expression system to produce more complex and also glycosylated proteins for therapeutic use in the future.

Expression of a Bacillus subtilis Endoglucanase in Protease-Deficient Bacillus subtilis Strains

  • Yang, Mi-Jeong;Jung, Sun-Hwa;Shin, Eun-Sun;Kim, Jung-Ho;Yun, Han-Dae;Wong, Sui-Lam;Kim, Ho-On
    • Journal of Microbiology and Biotechnology
    • /
    • 제14권2호
    • /
    • pp.430-434
    • /
    • 2004
  • Three extracellular protease-deficient Bacillus subtilis strains were transformed with the plasmid pCK98 containing the endo-$\beta$-1,4-glucanase (Eng) gene of B. subtilis BSE616. The three transformants, B. subtilis DB104 (pCK98), WB600 (pCK98) and WB700 (pCK98), produced the same high level of enzyme activity and showed similar patterns of cell growth and enzyme production. When B. subtilis DB 104 (pCK98), a two-extracellular protease deficient strain, was cultured for 22 h, almost all the secreted enzyme was found to be in the completely cleaved form by both activity staining and Western blotting studies. B. subtilis WB600 (pCK98), a six-extracellular protease-deficient strain, produced a partially cleaved form in addition to the intact form of the enzyme, although the degree of internal cleavage of the enzyme was greatly reduced. With B. subtilis WB700 (pCK98), a seven-extracellular protease-deficient strain, almost all the enzyme was produced as the intact uncleaved form. This study illustrates that a role of the V pr protease is to degrade foreign proteins produced in B. subtilis and WB700 is a suitable expression system for producing the intact form of the Eng and other foreign proteins that may lose at least part of their efficacy due to internal proteolytic cleavage.

원지와 석창포 혼합추출액의 pCT105로 유도된 신경세포암 세포주에 대한 항치매 효과 (The Effects of anti-Alzheimer in pCT105-induced Neuroblastoma cell lines by Radix Polygalae and Rhizoma Acori Graminei mixture extract)

  • 이성률;강형원;김상태;류영수
    • 동의생리병리학회지
    • /
    • 제17권4호
    • /
    • pp.1037-1049
    • /
    • 2003
  • Numerous lines of evidence indicate that some of the neurotoxicity associated with Alzheimer's disease (AD) is due to proteolytic fragments of the amyloid precursor protein (APP). Most research has focused on the amyloid 6 (M). However, the possible role of other cleaved products of APP is less clear. Lately It has been reported that a recombinant carboxy-terminal 105 amino acid fragment (CT105) of APP induced strong nonselective inward currents in Xenopus oocyte. In a brain with Alzheimer's disease (AD), to investigate the roles of carboxyl-terminal fragment (CT105) of amyloid precursor protein (APP) in apoptosis processes possibly linked to neurodegeneration associated with AD, we examined the effects of the CT of APP with 105 amino acid residues (CT105) on the alteration of apoptosis triggers in neubroblastoma cells. We have investigated whether Radix Polygalae and Rhizoma Acori Graminei mixture extract (RP+RAG) inhibits CT105-induced apoptosis of neuroblastoma cells. We found that RP+RAG inhibits CT105-induced apoptosis in SK-N-SH cells. Treatment of the cells with RP+RAG inhibited CT105-induced DNA fragmentation and Tunel assay of nuclear chromatin and inhibited the caspase-3 expression in SK-N-SH cells. As the result of this study, In RP+RAG group, the apoptosis in the nervous system is inhibited, the repair against the degerneration of neuroblastoma cells by CT105 expression is promoted. These results indicate that RP+RAG possess strong inhibitory effect of apoptosis in the nervous system and repair effect against the degeneration of neuroblastoma cells by CT105 expression

착상기 Insulin-like Growth Factor System의 역할 (The Role of the Insulin-like Growth Factor System during the Periimplantation Period)

  • 이철영
    • 한국수정란이식학회지
    • /
    • 제12권3호
    • /
    • pp.229-246
    • /
    • 1997
  • Implantation is a most important biological process during pregnancy whereby conceptus establishes its survival as well as maintenance of pregnancy. During the periimplantation period, both uterine endometriurn and conceptus synthesize and secrete a host of growth factors and cytokines which mediate the actions of estrogen and /or progesterone and also exert their steroid-independent actions. Growth factors expressed by the materno-conceptal unit en masse have important roles in cell migration, stimulation or inhibition of cell proliferation, cellular differentiation, maintenance of pregnancy and materno-conceptal communications in an autorcrine /paracrine manner. The present review focuses on the role of the intrauterine IGF system during periimplantation conceptus development. The IGF system comprises of IGF- I and IGF- II ligands, types I and II IGF receptors and six or more IGF-binding proteins(IGFBPs). IGFs and IGFBPs are expressed and secreted by uterine endometrium with tissue, pregnancy stage and species specificities under the influence of estrogen, progesterone and other growth factor(s). Conceptus also synthesizes components of the IGF system beginning from a period between 2-cell and blastocyst stages. Maternal IGFs are utilized by both maternal and conceptal tissues; conceptus-derived growth factors are believed to be taken up primarily by conceptus. IGFs enhance the development of both maternal and conceptal compartments in a wide range of biological processes. They stimulate proliferation and differentiation of endometrial cells and placental precursor cells including decidual transformation from stromal cells, placental formation and the synthesis of some steroid and protein hormones by differentiated endometrial cells or placenta. It is also well-documented in a number of experimental settings that both IGFs stimulate preimplantation embryo development. In slight contrast to these, prenatal mice carrying a null mutation of IGF and /or IGF receptor gene do not exhibit any apparent growth retardation until after implantation. Reason (s) for this discrepancy between the knock-out result and the in vitro ones, however, is not known. IGFBPs, in general, are believed to inhibit IGF action within the materno-conceptal unit, thereby allowing endometrial stromal cell differentiation as well as dampening ex cessive placental invasion into maternal tissue. There is evidence, however, indicating that IGFBP can enhance IGF action depending on environrnental conditions perhaps by directioning IGF ligand to the target cell. There is also a third possibility that certain IGFBPs and their proteolytic fragments may have their own biological activities independent of the IGF. In addition to IGFBPs, IGFBP proteases including those found within the uterine tissue or lumen are thought to enhance IGF bioavailability by degrading their substrates without affecting their bound ligand. In this regard, preliminary results in early pregnant pigs suggest that a partially characterized IGFBP protease activity in uterine luminal fluid enhances intrauterine IGF bioavailability during conceptus morphological development. In summary, a number of in vitro results indicate that IGFs stimulates the development of the rnaterno-conceptal unit during the periimplantation period. IGFBPs appear to inhibit IGF action by sequestering their ligands, whereas IGFBP proteases are thought to enhance intrauterine bioavailability of IGFs. Much is remaining to be clarified, however, regarding the roles of the individual IGF system components. These include in vivo evidence for the role of IGFs in early conceptus development, identification of IGF-regulated genes and their functions, specific roles for individual IGFBPs, identification and characterization of IGFBP proteases. The intrauterine IGF club house thus will be paying a lot of attention to forthcoming results in above and other areas, with its door wide-open!

  • PDF

Yeast내에서 탄저병 원인균인 Bacillus anthracis의 치사독소인 Lethal Factor 단백질 발현 (Expression of Anthrax Lethal Factor, a Major Virulence Factor of Anthrax, in Saccharomyces cerevisiae)

  • 황혜현;김정목;최경재;정회일;한성환;구본성;윤문영
    • 미생물학회지
    • /
    • 제41권4호
    • /
    • pp.275-280
    • /
    • 2005
  • Bacillus anthracis는 탄저병의 병원체이다. 탄저병의 독소는 Bacillus anthracis가 가진 세가지 독소로 이루어져 있다. protective antigen (PA), lethal factor (LF)그리고 edema factor (EF)로 구성되어 있다. PA는 세포수용체와 결합하여 활성화 과정을 거친 후 LF 흑은 EF를 세포질 안으로 이동시켜 주는 역할을 한다. LF는 금속이온 $(Zn^{2+})$ 의존적 단백질 가수분해 효소로써 탄저병에 감염된 동물들의 치사독소로 작용하게 된다. 따라서 LF에 대한 특성 분석 및 억제재 개발에 관한 연구는 탄저치료제 개발에 매우 중요한 과정이라 할 수 있다. 본 연구에서는 탄저독소의 치료제 개발을 위해 선행되어야 하는 LF 고처리량 활성검증방법 및 저해제 선별에 더 높은 효율을 가지기 위해 이러한 시스템 방법 등을 이용하여 세포내 검정방법의 기초 자료를 마련하고자 하였다. 이를 위하여 yeast를 숙주로 한 LF 발현 vector의 구축과, 구축한 발현 시스템을 yeast에 형질전환 하여 plasmid의 안정성 및 LF유전자의 발현을 확인하였다. 본 연구는 LF유전자의 발현을 진핵세포 내에서 처음으로 시도했으며, 세포내 검증 시스템 도입의 기초적 자료를 제공하였다. Yeast내에서의 LF의 발현은 탄저병의 저해제 선별이나 활성측정검증을 생체 내에서 용이하게 할 수 있다는 가능성을 나타냈다.

Serum Level of MMP-3 in Patients with Oral Squamous Cell Carcinoma - Lack of Association with Clinico-pathological Features

  • Tadbir, Azadeh Andisheh;Purshahidi, Sara;Ebrahimi, Hooman;Khademi, Bijan;Malekzadeh, Mahzad;Mardani, Maryam;Taghva, Masumeh;Sardari, Yasaman
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권9호
    • /
    • pp.4545-4548
    • /
    • 2012
  • Background: MMP-3 is a proteolytic enzyme of the matrix metalloproteinase family. Protein degradation which is their fundamental action regulates different activities of tumor cell such as their growth, differentiation, apoptosis, migration, invasion, angiogenesis as well as their resistance to the immune system. Aim: The aim of this study was to determine MMP-3 serum levels in patients with OSCC and investigate if they correlate with clinicopathological features. Method and materials: Using an ELISA kit, we assessed and compared the circulating levels of MMP-3 in blood serum of 45 oral squamous cell carcinoma patients with 45 healthy control samples. Results: The serum MMP-3 level in OSCC patients was significantly higher ($9.45{\pm}4.6$ ng/ml) than healthy controls ($5.9{\pm}3.6$ ng/ml, p<0.001), especially in females and in older patients. However, there was no apparent correlation in serum MMP-3 concentration with the clinico-pathological features such as tumor location, stage, tumor size, nodal status, distant metastasis, histological grade and smoking. Discussion: This result suggests that the measurement of serum MMP-3 concentration might be helpful to diagnose OSCC but not to predict prognosis.