• 제목/요약/키워드: proteolytic conditions

검색결과 108건 처리시간 0.031초

An Influence of Pretreatment Conditions on Mutagen Binding of Lactobacillus paracasei subsp. tolerans JG22 against MNNG and 2-NF

  • Lim, Sung-Mee
    • Journal of Applied Biological Chemistry
    • /
    • 제56권3호
    • /
    • pp.147-156
    • /
    • 2013
  • The objectives of this study were to investigate the effect of Lactobacillus paracasei subsp. tolerans JG22 isolated from pepper leaf jangajji on the mutagenic activity of N-methyl, N'-nitro, N-nitrosoguanidine (MNNG) and 2-nitrofluene (2-NF) and to evaluate the effect of physico-chemical pretreatment on the antimutagenic activity of the strain. The viable cells of JG22 strain displayed a significantly high (p <0.05) antimutagenic activity against both mutagens tested. The antimutagenic effect of JG22 strain seems to be positively correlated with the amounts of the cells in the incubation time. This strain produced the antimutagenic activity of the maximum levels after preincubation for 30 min. The binding of this strain against the mutagenic compounds might be mainly present in the cell wall fraction rather than the cytosol fraction. Pretreatment with proteolytic enzymes and simulated gastric and intestinal juices and at different pH values had no significant effect on two mutagens removal by the viable cells. However, the binding activity of the mutagen by the strain seems to be affected by heating, enzymes including $\alpha$-amylase and lysozyme, divalent ions, and sodium metaperiodate. Thus, carbohydrates consisting of the cell walls may be important elements responsible for the binding of MNNG and 2-NF by this strain. In conclusion, the binding of the mutagens to cells of JG 22 strain may play a vital role in suppressing the process of mutagenesis induced by mutagens.

In vitro Drug Release Characteristics of Methotrexate-Human Serum Albumin and 5-Fluorouracil-Acetic Acid Human Serum Albumin Conjugates

  • Kim, Chong-Kook;Lee, Myung-Gull;Park, Man-Ki-Heejoo;Lee, Hae-Jin;Kang, Hae-Jin
    • Archives of Pharmacal Research
    • /
    • 제12권3호
    • /
    • pp.186-190
    • /
    • 1989
  • The release rates of methotrexate (MTX) from MTX-human serum albumin (HSA) conjugate, and 5-fluorouracil (5-FU) from 5-FU acetic acid (AA)-HSA conjugate were determined after incubation of the conjugates in various conditions. The concentrations of 5-FU released from the conjugate increased monoexponentially, however those of MTX increased biexponentially in all studies. It indicated that there are two distinct types of MTX-HSA linkage, weakly and tightly bound linkages. The release rates of 5-FU were lower than those of MTX in all studies indicating that the bond of 5-FU-AA-HSA conjugate is very stable, which is supported by the higher value of activation energy (39. 9 vs 10. 7 Kcal/mole) using Arrhenius equation. The release rates of MTX and 5 -FU from the conjugates increased with incubation temperatures. Proteolytic enzyme and liver homogenates accelerated significantly the release rates of MTX and 5-FU. Approximately 1.30 and 22.0% of MTX were released after 12 hours of incubation in the absence and presence of protease, respectively. The corresponding values for 5-FU were released after 12 hours of incubation with rat liver homogenates which were diluted 6 times with phosphate buffer of pH 6.0. The MTX-HSA and 5-FU-AA-HSA conjugates were very stable in rat plasma.

  • PDF

A New Insight into the Role of Calpains in Post-mortem Meat Tenderization in Domestic Animals: A review

  • Lian, Ting;Wang, Linjie;Liu, Yiping
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제26권3호
    • /
    • pp.443-454
    • /
    • 2013
  • Tenderness is the most important meat quality trait, which is determined by intracellular environment and extracellular matrix. Particularly, specific protein degradation and protein modification can disrupt the architecture and integrity of muscle cells so that improves the meat tenderness. Endogenous proteolytic systems are responsible for modifying proteinases as well as the meat tenderization. Abundant evidence has testified that calpains (CAPNs) including calpain I (CAPN1) and calpastatin (CAST) have the closest relationship with tenderness in livestock. They are involved in a wide range of physiological processes including muscle growth and differentiation, pathological conditions and post-mortem meat aging. Whereas, Calpain3 (CAPN3) has been established as an important activating enzyme specifically expressed in livestock's skeletal muscle, but its role in domestic animals meat tenderization remains controversial. In this review, we summarize the role of CAPN1, calpain II (CAPN2) and CAST in post-mortem meat tenderization, and analyse the relationship between CAPN3 and tenderness in domestic animals. Besides, the possible mechanism affecting post-mortem meat aging and improving meat tenderization, and current possible causes responsible for divergence (whether CAPN3 contributes to animal meat tenderization or not) are inferred. Only the possible mechanism of CAPN3 in meat tenderization has been confirmed, while its exact role still needs to be studied further.

저염 오징어젓갈 제조 방법 및 향미 성분 3. 오징어젓갈에서 분리한 Pseudomonas D2가 생성하는 Protease의 효소학적 특성 (Processing Conditions of Low-Salt Fermented Squid and Its Flavor Components 3. Characterization of Protease Produced by Pseudomonas D2 Isolated from Squid Jeotkal)

  • 허성호;이호재;김형선;최성희;김영만
    • 한국식품영양과학회지
    • /
    • 제24권4호
    • /
    • pp.636-641
    • /
    • 1995
  • Proteolytic activities were compared using three species involving in squid jeotkal fermentation and showing positive reaction upon casein test : Pseudomonas D2, Flavovacterium odoratum and Acinetobacter calcoaceticus. Pseudomonas D2 produced highest activity of protease at 72h when incubated in our own modified medium(polypeptone, 0.5% ; tryptone, 0.5% ; NaCl, 3% ; pH, 7.5). Thus, this specie was selected for the further study. The growth pattern was coincided with the production of protease. Thus purification of protease was proceeded by ethanol precipitation, sephadex G-100 gel filtration, and DEAE sepharose ion exchange chromatography. The purified protease showed highest activity at pH 7.0 and 5$0^{\circ}C$. The enzyme was very stable over the wide ragnes of the temperature ; even with one hour heat treatment at 7$0^{\circ}C$, the enzyme showed substantial amount of the activity toward casein. In addition, the enzyme was stable over the wide range of pH. Molecular weight of the protease was determined to be 17.4 kD by SDS-PAGE.

  • PDF

콩 불마름병균의 생장 조건이 박테리오신인 glycinecin의 생성에 미치는 영향 (Influence of Growth Conditions for the Production of Bacteriocin, Glycinecin, Produced by Xanthmonas campestris pv. glycines 8ra)

  • Woo Jung;Sunggi Heu;Cho, Yong-Sup
    • 한국식물병리학회지
    • /
    • 제14권5호
    • /
    • pp.376-381
    • /
    • 1998
  • Xanthomonas campestris pv. glycines 8ra causes bacterial pustule disease on susceptible soybean leaves and produces a bacteriocin, named glycinecin, against related bacteria such as Xanthomonas campestris pv. vesicatoria. The antimicrobial activity of the glycinecin was effective to most tested Xanthomonas species. X. c. pv. glycines 8ra was able to produce the glycinecin in liquid media as well as solid media. Maximal productivity of glycinecin was obtained at 3$0^{\circ}C$ in the early stationary phase of growth of the X. c. pv. glycines 8ra. The production of glycinecin was not dependent on the initial inoculum level but on cell density. Glycinecin was very sensitive to proteolytic enzymes such as trypsin and proteinase K but resistant to DNase and RNase. The culture supernatant of X. c. pv. glycines 8ra retained some of its antimicrobial activity after 15 min at 6$0^{\circ}C$. It is stable at wide range of pH. The glycinecin showed the bactericidal activity after the adsorption of the glycinecin to the sensitive bacterial cell.

  • PDF

우유의 품질과 저온성균 (Quality of Milk and Psychrotophic Bacteria)

  • 정충일
    • Journal of Dairy Science and Biotechnology
    • /
    • 제18권1호
    • /
    • pp.38-46
    • /
    • 2000
  • Since generalization of cold storage of raw and processed milk, psychrotrophic bacteria has become more important. The number present in raw milk is related to sanitary conditions during pro-duction and to length and temperature of storage before pasteurization. Growth of psychrotrophs In raw milk often reduces the quality of pasteurized products. Recently, some pathogenic bacteria like Listeria monocytogenes, Yersinia enterocolitica, Bacillus cereus are reported to grow at low temperature and cause food poisoning. The presence of gram positive psychrotrophic bacteria which can survive pasteurization can limit the shelf life of pasteurized milk during extended storage and the survival of heat stable proteases and lipases produced by gram negative psychrotrophic bacteria often brings about proteolytic damage to milk protein in the products. Therefore, in order to prevent the deteorioration of milk and milk products by the growth of psychrotrophs, it is necessary to cool down the temperature of raw milk as soon as possible after milking and to keep the temperature below 5t during storage at farm. As psychrotrophic bacteria become readily predominant in raw milk under refregeration, it can be considered to change the traditional incubating temperature for SPC from 30${\sim}$32$^{\circ}C$ to 25${\sim}$27$^{\circ}C$ at which the psychrotrophs prefer to grow. The psychrotrophic bacterial count(PBC) is of limited use in dairy industry, because of the 10 days incubation period. Although estimates of psychrotrophic bacteria may provide an acceptable shelf-life prediction, there is no single, generally acceptable rapid method for replacing the PBC at the moment. Consequently, faster method for esmating psychrotrophic bacteria has to be developed.

  • PDF

Detecting Activated Thrombin Activatable Fibrinolysis Inhibitor (TAFIa) and Inactivated TAFIa (TAFIai) in Normal and Hemophilia A Plasmas

  • Hulme, John P.;An, Seong Soo A.
    • Bulletin of the Korean Chemical Society
    • /
    • 제30권1호
    • /
    • pp.77-82
    • /
    • 2009
  • Thrombin activatable fibrinolysis inhibitor (TAFI) also known as plasma procarboxypeptidase B or U is a 60 kD glycoprotein, which is the major modulator of fibrinolysis in plasma. TAFI is a proenzyme, which is activated by proteolytic cleavage to an active carboxypeptidase B-like enzyme (TAFIa, 35.8 kD) by thrombin/thrombomodulin and plasmin. Modulation of fibrinolysis occurs when TAFIa enzymatically removes C-terminal lysine residues of partially degraded fibrin, thereby inhibiting the stimulation of tissue plasminogen activator (t-PA) modulated plasminogen activation. TAFIa undergoes a rapid conformational change at $37{^{\circ}C}$ to an inactive isoform called TAFIai. Potato tuber carboxypetidase inhibitor (PTCI) was shown to specifically bind to TAFIa as well as TAFIai. In this study, a novel immunoassay TAFIa/ai ELISA was used for quantitation of the two TAFI activation isoforms TAFIa and TAFIai. The ELISA utilizes PTCI as the capture agent and a double antibody sandwich technique for the detection. Low levels of TAFIa/ai antigen levels were detected in normal plasma and elevated levels were found in hemophilia A plasmas. TAFIa/ai antigen represents a novel marker to monitor fibrinolysis and TAFIa/ai ELISA may be a valuable assay for studying the role of TAFI in normal hemostasis and in pathological conditions.

Bacillus sp. HB-5균주가 생산하는 단백질 분해 효소의 분리. 정제 및 화장품에의 응용 (Purification and Identification of pretense from Bacillus sp. HB-5 and its application of cosmetic product)

  • 이범천;윤은정;이동환;표형배
    • 대한화장품학회지
    • /
    • 제26권1호
    • /
    • pp.107-124
    • /
    • 2000
  • A bacterial strain No. HB-5, which was capable of producing a pretense in the culture conditions, was isolated from the soil . The pretense was purified from cultural filtrate of Bacillus sp. HB-5 by membrane ultrafiltration and DEAE- cellulose chromatography, gel filtration on Sephadex G-100. The molecular weight was estimated to be 60k4a. The optimal pH and temperature for the activity of the purified pretense pH were 11 and 5$0^{\circ}C$ , respectively. The enzyme was stable within a pH range 8-12 and up to 6$0^{\circ}C$ . The enzyme activity was highly inhibited by PMSF at 1mM. The proteolytic actions of pretense and papain on human epidermis keratins which are major protein impurities on the skin, were compared. The bacterial pretense degraded more effectively than papain. Product containing 2% protease exhibited 21% increase on the skin coloration index. These results suggest that cosmetic product containing pretense produced by Bacillus sp. HB-5 could remove the adherent keratin layer and then make a softer skin.

  • PDF

Redox Regulation of Apoptosis before and after Cytochrome C Release

  • Chen, Quan;Crosby, Meredith;Almasan, Alex
    • Animal cells and systems
    • /
    • 제7권1호
    • /
    • pp.1-9
    • /
    • 2003
  • Programmed cell death, or apoptosis, is one of the most studied areas of modern biology. Apoptosis is a genetically regulated process, which plays an essential role in the development and homeostasis of higher organisms. Mitochondria, known to play a central role in regulating cellular metabolism, was found to be critical for regulating apoptosis induced under both physiological and pathological conditions. Mitochondria are a major source of reactive oxygen species (ROS) but they can also serve as its target during the apoptosis process. Release of apoptogenic factors from mitochondria, the best known of which is cytochrome c, leads to assembly of a large apoptosis-inducing complex called the apoptosome. Cysteine pretenses (called caspases) are recruited to this complex and, following their activation by proteolytic cleavage, activate other caspases, which in turn target for specific cleavage a large number of cellular proteins. The redox regulation of apoptosis during and after cytochrome c release is an area of intense investigation. This review summarizes what is known about the biological role of ROS and its targets in apoptosis with an emphasis on its intricate connections to mitochondria and the basic components of cell death.

Baicalin suppresses lipopolysaccharide-induced matrix metalloproteinase expression: action via the mitogen-activated protein kinase and nuclear factor κB-related protein signaling pathway

  • Ko, Seon-Yle
    • International Journal of Oral Biology
    • /
    • 제46권1호
    • /
    • pp.51-59
    • /
    • 2021
  • Periodontal disease is an inflammatory disease that affects the destruction of the bone supporting the tooth and connective tissues surrounding it. Periodontal ligament fibroblasts (PDLFs) induce overexpression of matrix metalloproteinase (MMP) involved in periodontal disease's inflammatory destruction. Osteoclasts take part in physiological bone remodeling, but they are also involved in bone destruction in many kinds of bone diseases, including osteoporosis and periodontal disease. This study examined the effect of baicalin on proteolytic enzymes' production and secretion of inflammatory cytokines in PDLFs and RAW 264.7 cells under the lipopolysaccharide (LPS)-induced inflammatory conditions. Baicalin inhibited the expression of the protein, MMP-1 and MMP-2, without affecting PDLFs' cell viability, suggesting its possibility because of the inhibition of phosphorylation activation of mitogen-activated protein kinase's p38, and the signal transduction process of nuclear factor κB (NFκB)-related protein. Also, baicalin reduced the expression of MMP-8 and MMP-9 in RAW 264.7 cells. This reduction is thought to be due to the inhibition of the signal transduction process of NFκB-related proteins affected by inhibiting p65RelA phosphorylation. Also, baicalin inhibited the secretion of nitric oxide and interleukin-6 induced by LPS in RAW 264.7 cells. These results suggest that baicalin inhibits connective tissue destruction in periodontal disease. The inhibition of periodontal tissue destruction may be a therapeutic strategy for treating inflammatory periodontal-diseased patients.