• 제목/요약/키워드: proteolytic

검색결과 930건 처리시간 0.024초

Production of Carrot Pomace Fortified with Mucilage, Fibrinolytic Enzyme and Probiotics by Solid-state Fermentation Using the Mixed Culture of Bacillus subtilis and Leuconostoc mesenteroides

  • Jung, Hye-Won;Lee, Sam-Pin
    • Preventive Nutrition and Food Science
    • /
    • 제14권4호
    • /
    • pp.335-342
    • /
    • 2009
  • Bioactive compounds were produced from carrot pomace by solid-state fermentation using Bacillus subtilis HA and Leuconostoc mesenteroides. The carrot pomace (CP) fermented by B. subtilis HA with 3% monosodium glutamate (MSG) showed higher production of various bioactive compounds, with 1.64 Pa·sn of consistency, 2.31% of mucilage content, 16.95 unit/g of fibrinolytic enzyme activity, 35.3 unit/g of proteolytic activity and 37.5 mg% of tyrosine content. The mucilage production was greatly dependent upon the concentration of MSG added. Most MSG added in CP was converted into mucilage (2.3%) including 0.83% poly-$gamma$-glutamic acid (PGA) with 1,505 kDa of molecular weight. The CP fermented secondly by Leuc. mesenteroides showed acidic pH and lower consistency. However, the fibrinolytic and proteolytic activities were increased. The secondly fermented CP showed the viable cell counts with $2.5{\time}108$ CFU/g of B. subtilis HA and $3.7{\time}109$ CFU/g of Leuc. mesenteroides, respectively. The freeze-dried fermented CP showed 2.88 Pa·sn of consistency, 24% of mucilage content and 104.9 unit/g of fibrinolytic enzyme activity, respectively. Also, the powder of fermented CP indicated viable cell counts of $8.0{\time}107$ CFU/g of B. subtilis and $4.0{\time}108$ CFU/g of Leuc. mesenteroides. Therefore, the fermented CP that was fortified with dietary fibers, fibrinolytic enzyme and probiotics could be utilized as valuable ingredients of functional foods in food or cosmetic industries.

Effect of oleanolic acid on the activity, secretion and gene expression of matrix metalloproteinase-3 in articular chondrocytes in vitro and the production of matrix metalloproteinase-3 in vivo

  • Kang, Dong-Geun;Lee, Hyun Jae;Kim, Kun Tae;Hwang, Sun-Chul;Lee, Choong Jae;Park, Jin Sung
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제21권2호
    • /
    • pp.197-204
    • /
    • 2017
  • In the present study, we tried to examine whether oleanolic acid regulates the activity, secretion and gene expression of matrix metalloproteinase-3 (MMP-3) in primary cultured rabbit articular chondrocytes, as well as the production of MMP-3 in the knee joint of rat to evaluate the potential chondroprotective effect of oleanolic acid. Rabbit articular chondrocytes were cultured in a monolayer, and reverse transcription-polymerase chain reaction (RT-PCR) was used to measure interleukin-$1{\beta}$ (IL-$1{\beta}$)-induced gene expression of MMP-3, MMP-1, MMP-13, a disintegrin and metalloproteinase with thrombospondin motifs-4 (ADAMTS-4), ADAMTS-5 and type II collagen. In rabbit articular chondrocytes, the effects of oleanolic acid on IL-$1{\beta}$-induced secretion and proteolytic activity of MMP-3 were investigated using western blot analysis and casein zymography, respectively. The effect of oleanolic acid on in vivo MMP-3 protein production was also examined, after intra-articular injection to the knee joint of rat. The results were as follows: (1) oleanolic acid inhibited the gene expression of MMP-3, MMP-1, MMP-13, ADAMTS-4, and ADAMTS-5, but increased the gene expression of type II collagen; (2) oleanolic acid reduced the secretion and proteolytic activity of MMP-3; (3) oleanolic acid suppressed the production of MMP-3 protein in vivo. These results suggest that oleanolic acid can regulate the activity, secretion and gene expression of MMP-3, by directly acting on articular chondrocytes.

체다치즈에서 분리한 내냉성미생물의 단백질분해효소의 특성 (Characterization of Extracellular Proteolytic Enzyme of Isolated Psychrotrophic Bacteria from Cheddar Cheese)

  • 김은아;이경욱;부원백;이형환;곽해수
    • 한국식품과학회지
    • /
    • 제23권4호
    • /
    • pp.452-458
    • /
    • 1991
  • 체다치즈 숙성기간 중 존재하는 저온성세균을 분리하여 단백질분해능이 우수한 균주를 선발하였고 이 선발된 균주가 생산하는 효소의 특성을 연구하였다. 체다치즈 숙성기간 중 미생물의 변화를 관찰한 결과 내냉성세균이 일정하게 유지되고 있었는데 그 중 200개의 균주를 1차 선발한 후 단백질분해능이 우수한 균주 3개를 분리, 동정한 결과 P. fluorescens 두 종과 A. denitrificans였다. 그 중 활력이 가장 높은 P. fluorescens 65가 생산하는 효소를 gel filtration에 의해 정제한 결과 $190{\sim}230ml$ elution volume에서 protease가 용출되었고 SDS-PAGE로 분석한 결과 분자량은 47,000인 것으로 나타났으며 아미노산 조성은 Glu(14.96%)와 Ser(13.83%)의 함량이 제일 높았고 Met, Trp은 존재하지 않았다. P. fluorescens 65의 성장곡선에 따른 효소활력을 실험한 결과 세포증식이 활발한 대수증식기에서 단백질분해효소를 많이 분비함이 나타났으며 pH는 변화가 없이 일정하였다. Extracellular protease 65의 반응 최적온도는 $45{\sim}50^{\circ}C$ 사이었으며 최적 pH는 6.0으로 나타났다.

  • PDF

효소 가수분해 방법을 이용한 스피루리나 추출물의 제조 (Production of Spirulina Extract by Enzymatic Hydrolysis)

  • 인만진;권수연;채희정;김동청;김동호
    • Applied Biological Chemistry
    • /
    • 제50권4호
    • /
    • pp.304-307
    • /
    • 2007
  • 세포벽 분해 효소와 단백질 분해 효소를 이용하여 스피루리나 추출물을 효율적으로 생산할 수 있는 방법을 조사하였다. 세포벽 분해 효소인 Tunicase의 사용 농도는 2%가 적당하였다. 고형분 회수율과 핵산 관련 성분의 함량을 나타내는 spiruina extraction(SE) index를 기준으로 상업용 단백질 분해 효소를 선별하였다. 일곱 종류의 효소를 조사한 결과, Esperase가 가장 우수하였으며, 최적 사용량은 2%이었다. Tunicase와 Esperase를 순차전으로 반응시키거나 동시에 반응시켜도 고형분 회수율과 SE index는 매우 유사하였으며 동시에 사용하는 것이 반응 시간을 단축시킬 수 있었다. 두 효소를 동시에 반응시키면 단순 열수 추출보다 고형분 회수율은 약 45%$(45.2%{\rightarrow}65.3%)$, SE index는 약 75%$(11.4{\rightarrow}20.0)$ 증가하였다.

초고온 살균유의 저장 중 겔 형성 거동 (Gelation Behavior of Ultra High Temperature Pasteurized Milk during Storage)

  • 조영희;홍윤호
    • 한국축산식품학회지
    • /
    • 제20권1호
    • /
    • pp.8-14
    • /
    • 2000
  • In order to examine physicochemical gelation behavior of ultra high temperature(UHT) pasteurized milk during storage at 4$^{\circ}C$ and 25$^{\circ}C$, pH, electrophoresis, alcohol test, sialic acid contents and free amino groups contents were biweekly determined. The pH of UHT pasteurized milk decreased with increasing storage time. Gelation of the UHT milk occured faster at 25$^{\circ}C$ than at 4$^{\circ}C$ with larger decreasing rate of pH. The alcohol test showed positive results at lower pH than 6.5, which could indicate the casein instability and beginning of gelation. The electrophoretic patterns showed a decrease in the concentrations of all caseins. Degradation of k-casein was faster in all cases, while $\alpha$-casein and $\beta$-casein were also extensively degraded later. The sialic acid contents of the samples increased gradually during storage, and the increasing rate was higher before gel formation. The free amino groups of the samples increased gradually during storage. The increasing rate of free amino groups was faster at 25$^{\circ}C$ than at 4$^{\circ}C$. The samples stored at 25$^{\circ}C$ gelled earlier than those stored at 25$^{\circ}C$, with corresponding increase of free amino groups. The residual proteolytic enzymes, which survived during the UHT heat treatments and were reactivated during storage, could be responsible for UHT pasteurized milk gelation during storage. It is assumed that proteolytic degradation of caseins followed by aggregation would be attributable to complicated reaction mechanism.

  • PDF

스파르가눔 총체에서 분리한 cysteine proteinase의 정제 및 부분 특성 (Isolation and Partial Characterization of Cysteine Proteinase from Sparganum)

  • 송철용;최동호
    • Parasites, Hosts and Diseases
    • /
    • 제30권3호
    • /
    • pp.191-200
    • /
    • 1992
  • 한국산 유혈목이에서 스파르가눔 충체를 수집하고, 이들 충체의 추출액에서 ion-exchange chromatography와 affinity chromatography를 실시하여 cysteine proteinase를 순수 정제하였다. 경제된 효소의 최적 pH는 5.5이었고, 최적 mole 농도는 0.IM (0.1M sodium acetate, pH5.5) 이었다. 정제된 대소는 thiol-dependent이고, $4^{\circ}C$에서 pH 5.0일 때 24시간 동안 안전성을 보였다. 효소의 환성도는 저분자 합성기질인 CBZ-phe-arg-AFC에 대 해 활성이 높았다. 정제된 효소는 척추동물의 산성 cysteine proteinase의 억제인자에 감수성을 보였다. UItrogel AcA54 column chromatography로 정제된 cysteine proteinase의 분자량을 측정한 결과 28,000 dalton이었다. 정제된 효소는 collagen type I과 hemoglobin을 분해하였다. Immunoblot한 결과 정제된 효소는 스파르가눔증 환자의 혈청과 반응하였다. 이상의 결과에서 스파르가눔의 cysteine proteinase는숙주 체내이동, 조직침수성 및 영양소 섭취에 관여할 것이라 추정되며, 정제된 효소는 스파르가눔 현중의 혈청학적 진단에 이용될 수 있을 것으로 생각된다.

  • PDF

버섯 푸른곰팡이균에 대한 길항세균의 항균활성과 세포외 분비효소 생성능 (Antifungal Activity and Exoenzyme Production of Several Bacteria Antagonistic to Trichoderma spp. Causing Green Mold Disease)

  • 현성희;민봉희
    • 한국균학회지
    • /
    • 제30권2호
    • /
    • pp.147-151
    • /
    • 2002
  • Trichoderma속 균주는 느타리버섯 재배 시 발생되는 버섯 푸른곰팡이병의 주요 원인균이다. 후발효된 버섯 배지로부터 버섯 푸른곰팡이병균에 항균활성을 나타내는 길항세균(KATB 99121, KATB 99122 및 KATB 99123)을 분리하였다. 분리세균 중 KATB 99121은 T. harzianum(4균주). T. viride 및 T. hamatum과 동물병원성 곰팡이 Candida albicans에 대하여 우수한 억제 활성이 관찰되었고, 특히 세균의 배양상등액 접종실험에서 강한 항균활성을 보였다. 또한, KATB 99121은 전분, 단백질 및 섬유소를 분해하는 효소를 세포외로 분비하는 것으로 관찰되었고, KATB 99122와 KATB 99123은 전분, 단백질, 섬유소 분해효소는 물론 지질 분해효소도 분비하고 있었으며 ${\beta}$-glucosidase활성도 높은 것으로 확인되었다. 앞으로 이들 길항세균들을 이용하여 느타리버섯 푸른곰팡이병 방제를 위한 미생물 살균제의 개발에 대한 연구를 수행할 예정이다.

인체 전립선 암세포에서 Alkylating Agent인 N-methyl-N'-nitro- N-nitrosoguanidine에 의한 Apoptosis유발 (Induction of Apoptosis by N-methyl-N'-nitro-N-nitrosoguanidine, an Alkylating Agent, in Human Prostate Carcinoma Cells)

  • 박철;최병태;이원호;최영현
    • Toxicological Research
    • /
    • 제19권2호
    • /
    • pp.91-98
    • /
    • 2003
  • Alkylating agents form alkylated base adducts in the DNA and cause DNA lesions leading to cell killing. In this study, we investigated the mechanism of apoptosis induced by N-methyl-N'-nitro-N-nitrosoguanidine (MNNG) in PC-3 and DU145 human prostate carcinoma cell lines. MNNG treatment resulted in the inhibition of cell proliferation in a concentration-dependent manner to a similar extent in both cell lines. This anti-proliferative effect of PC-3 and DU145 cells by MNNG was associated with morphological changed such as membrane shrinking, cell rounding up and formation of apoptotic bodies. MNNG treatment also induced a proteolytic cleavage of specific target proteins such as poly(ADP-ribose) polymerase (PARP) and $\beta$-catenin proteins in DU145 cells but in PC-3 cells. Furthermore, we observed an increase of proapoptotic protein Bax family expression and a decrease of antiapoptotic protein Bcl-2 family by MNNG treatment in a concentration-dependent manner MNNG also induced a proteolytic activation of caspase-3 and -9, which is believed to play a central role in the apoptotic signaling pathway.

Screening of Indigenous Strains of Lactic Acid Bacteria for Development of a Probiotic for Poultry

  • Karimi Torshizi, M.A.;Rahimi, Sh.;Mojgani, N.;Esmaeilkhanian, S.;Grimes, J.L.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제21권10호
    • /
    • pp.1495-1500
    • /
    • 2008
  • In an attempt to develop a probiotic formulation for poultry feed, a number of lactic acid bacteria (LAB) were isolated from chicken intestinal specimens and a series of in vitro experiments were performed to evaluate their efficacy as a potential probiotic candidate. A total of 650 LAB strains were isolated and screened for their antagonistic potential against each other. Among all the isolates only three isolates (TMU121, 094 and 457) demonstrated a wide spectrum of inhibition and were thus selected for detailed investigations. All three selected isolates were able to inhibit the growth of E. coli and Salmonella species, although to variable extent. The nature of the inhibitory substance produced by the isolates TMU121 and 094 appeared to be associated with bacteriocin, as their activity was completely lost after treatment with proteolytic enzymes, while pH neutralization and catalase enzyme had no effect on the residual activity. In contrast, isolate TMU457 was able to resist the effect of proteolytic enzymes while pH neutralization completely destroyed its activity. Attempts were made to study the acid, bile tolerance and cell surface hydrophobicity of these isolates. TMU121 showed high bile salt tolerance (0.3%) and high cell surface hydrophobicity compared to the other two strains studied, while TMU094 appeared the most pH resistant strain. Based on these results, the three selected LAB isolates were considered as potential ingredients for a chicken probiotic feed formulation and were identified to species level based on their carbohydrate fermentation pattern by using API 50CH test kits. The three strains were identified as Lactobacillus fermentum TMU121, Lactobacillus rhamnosus TMU094, and Pediococcus pentosaceous TMU457.

Effects of Temperature and Supplementation with Skim Milk Powder on Microbial and Proteolytic Properties During Storage of Cottage Cheese

  • Oh, Nam Su;Lee, Hyun Ah;Myung, Jae Hee;Joung, Jae Yeon;Lee, Ji Young;Shin, Yong Kook;Baick, Seung Chun
    • Journal of Microbiology and Biotechnology
    • /
    • 제24권6호
    • /
    • pp.795-802
    • /
    • 2014
  • The aim of this study was to determine the effects of temperature and supplementation with skim milk powder (SMP) on the microbial and proteolytic properties during the storage of cottage cheese. Cottage cheese was manufactured using skim milk with 2% SMP and without SMP as the control, and then stored at $5^{\circ}C$ or $12^{\circ}C$ during 28 days. The chemical composition of the cottage cheese and the survival of the cheese microbiota containing starter lactic acid bacteria (SLAB) and non-starter culture lactic acid bacteria (NSLAB) were evaluated. In addition, changes in the concentration of lactose and lactic acid were analyzed, and proteolysis was evaluated through the measurement of acid soluble nitrogen (ASN) and non-protein nitrogen (NPN), as well as electrophoresis profile analysis. The counts of SLAB and NSLAB increased through the addition of SMP and with a higher storage temperature ($12^{\circ}C$), which coincided with the results of the lactose decrease and lactic acid production. Collaborating with these microbial changes, of the end of storage for 28 days, the level of ASN in samples at $12^{\circ}C$ was higher than those at $5^{\circ}C$. The NPN content was also progressively increased in all samples stored at $12^{\circ}C$. Taken together, the rate of SLAB and NSLAB proliferation during storage at $12^{\circ}C$ was higher than at $5^{\circ}C$, and consequently it led to increased proteolysis in the cottage cheese during storage. However, it was relatively less affected by SMP fortification. These findings indicated that the storage temperature is the important factor for the quality of commercial cottage cheese.