• Title/Summary/Keyword: protein-inorganic hybrid

Search Result 10, Processing Time 0.02 seconds

Immobilization of Xylanase Using a Protein-Inorganic Hybrid System

  • Kumar, Ashok;Patel, Sanjay K.S.;Mardan, Bharat;Pagolu, Raviteja;Lestari, Rowina;Jeong, Seong-Hoon;Kim, Taedoo;Haw, Jung Rim;Kim, Sang-Yong;Kim, In-Won;Lee, Jung-Kul
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.4
    • /
    • pp.638-644
    • /
    • 2018
  • In this study, the immobilization of xylanase using a protein-inorganic hybrid nanoflower system was assessed to improve the enzyme properties. The synthesis of hybrid xylanase nanoflowers was very effective at $4^{\circ}C$ for 72 h, using 0.25 mg/ml protein, and efficient immobilization of xylanase was observed, with a maximum encapsulation yield and relative activity of 78.5% and 148%, respectively. Immobilized xylanase showed high residual activity at broad pH and temperature ranges. Using birchwood xylan as a substrate, the $V_{max}$ and $K_m$ values of xylanase nanoflowers were 1.60 mg/ml and $455{\mu}mol/min/mg$ protein, compared with 1.42 mg/ml and $300{\mu}mol/min/mg$ protein, respectively, for the free enzyme. After 5 and 10 cycles of reuse, the xylanase nanoflowers retained 87.5% and 75.8% residual activity, respectively. These results demonstrate that xylanase immobilization using a proteininorganic hybrid nanoflower system is an effective approach for its potential biotechnological applications.

Organic-Inorganic Hybrid Nanoflowers as Potent Materials for Biosensing and Biocatalytic Applications

  • Tran, Tai Duc;Kim, Moon Il
    • BioChip Journal
    • /
    • v.12 no.4
    • /
    • pp.268-279
    • /
    • 2018
  • Flower-shaped organic-inorganic hybrid nanostructures, termed nanoflowers, have received considerable recent attention as they possess greatly enhanced activity, stability, durability, and even selectivity of entrapped organic biomolecules, which are much better than those from the conventional methods. They can be synthesized simply via co-incubation of organic and inorganic components in aqueous buffer at room temperature and yield hierarchical nanostructures with large surface-to-volume ratios, allowing for low-cost production by easy scale-up, as well as the high loading capacity of biomolecules without severe mass transfer limitations. Since a pioneering study reported on hybrid nanoflowers prepared with protein and copper sulfate, many other organic and inorganic components, which endow nanoflowers with diverse functionalities, have been employed. Thanks to these features, they have been applied in a diverse range of areas, including biosensors and biocatalysis. To highlight the progress of research on organic-inorganic hybrid nanoflowers, this review discusses their synthetic methods and mechanisms, structural and biological characteristics, as well as recent representative applications. Current challenges and future directions toward the design and development of multi-functional nanoflowers for their widespread utilization in biotechnology are also discussed.

Hydrogen Evolution from Biological Protein Photosystem I and Semiconductor BiVO4 Driven by Z-Schematic Electron Transfer

  • Shin, Seonae;Kim, Younghye;Nam, Ki Tae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.251.2-251.2
    • /
    • 2013
  • Natural photosynthesis utilizes two proteins, photosystem I and photosystem II, to efficiently oxidize water and reduce NADP+ to NADPH. Artificial photosynthesis which mimics this process achieve water splitting through a two-step Z-schematic water splitting process using man-made synthetic materials for hydrogen fuel production. In this study, Z-scheme system was achieved from the hybrid materials which composed of hydrogen production part as photosystem I protein and water oxidizing part as semiconductor BiVO4. Utilizing photosystem I as the hydrogen evolving part overcomes the problems of existing hydrogen evolving p-type semiconductors such as water instability, expensive cost, few available choices and poor red light (>600 nm) absorbance. Some problems of photosystem II, oxygen evolving part of natural photosynthesis, such as demanding isolation process and D1 photo-damage can also be solved by utilizing BiVO4 as the oxygen evolving part. Preceding research has not suggested any protein-inorganic-hybrid Z-scheme composed of both materials from natural photosynthesis and artificial photosynthesis. In this study, to realize this Z-schematic electron transfer, diffusion step of electron carrier, which usually degrades natural photosynthesis efficiency, was eliminated. Instead, BiVO4 and Pt-photosystem I were all linked together by the mediator gold. Synthesized all-solid-state hybrid materials show enhanced hydrogen evolution ability directly from water when illuminated with visible light.

  • PDF

Hybrid between Inorganic Material and Biological Photosystem1 for Light Energy Application

  • Kim, Yeong-Hye;Nam, Gi-Tae
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.08a
    • /
    • pp.272-272
    • /
    • 2013
  • The attractive features of photosynthetic reaction center proteins for energy application make them useful in solar energy conversion to hydrogen fuel or electrical energy. Almost unity charge separation quantum yield and its rapid speed of ~1ns, absorbance region in visible light (480~740 nm) and high proportion of photosynthetically active solar energy of 48.5% allowed photosystem1 to exploited as a bio-material for photo-energy devices. Directionality of photosystem1 in electron transfer can solve main problem in two-step water splitting process where back reaction deteriorates the overall efficiency. In the study, photosystem1 was extracted from spinach and the photo-induced excited electron in the reaction center was utilized in various field of light energy application. First, hydrogen evolving system realized by photodeposition of platinum at the end of the electron transfer chain, with combining specific semiconductor to oxidize water in the first step of Z-scheme. The evaluation by gas-chromatography demonstrated hydrogen evolution through the system. For the further application of photoelectrical material on electrode, photosystem1 have been controlled by copper ion, which is expected to assemble photosystem in specific orientation followed by maximized photoelectrical ability of film. The research proposed concrete methods for combining natural protein and artificial materials in one system and suggested possibility of designing interface between biological and inorganic materials.

  • PDF

Protein Analysis Using a Combination of an Online Monolithic Trypsin Immobilized Enzyme Reactor and Collisionally-Activated Dissociation/Electron Transfer Dissociation Dual Tandem Mass Spectrometry

  • Hwang, Hyo-Jin;Cho, Kun;Kim, Jin-Young;Kim, Young-Hwan;Oh, Han-Bin
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.10
    • /
    • pp.3233-3240
    • /
    • 2012
  • We demonstrated the combined applications of online protein digestion using trypsin immobilized enzyme reactor (IMER) and dual tandem mass spectrometry with collisionally activated dissociation (CAD) and electron transfer dissociation (ETD) for tryptic peptides eluted through the trypsin-IMER. For the trypsin-IMER, the organic and inorganic hybrid monolithic material was used. By employing the trypsin-IMER, the long digestion time could be saved with little or no sacrifice of the digestion efficiency, which was demonstrated for standard protein samples. For three model proteins (cytochrome c, carbonic anhydrase, and bovine serum albumin), the tryptic peptides digested by the IMER were analyzed using LC-MS/MS with the dual application of CAD and ETD. As previously shown by others, the dual application of CAD and ETD increased the sequence coverage in comparison with CAD application only. In particular, ETD was very useful for the analysis of highly-protontated peptide cations, e.g., ${\geq}3+$. The combination approach provided the advantages of both trypsin-IMER and CAD/ETD dual tandem mass spectrometry applications, which are rapid digestion (i.e., 10 min), good digestion efficiency, online coupling of trypsin-IMER and liquid chromatography, and high sequence coverage.

Influence of Level and Source (Inorganic vs Organic) of Zinc Supplementation on Immune Function in Growing Lambs

  • Droke, E.A.;Gengelbach, G.P.;Spears, J.W.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.11 no.2
    • /
    • pp.139-144
    • /
    • 1998
  • Eighteen lambs were used to determine the effects of zinc (Zn) level and source on Zn status and immune function during both normal conditions and conditions of physiologic stress. Treatments consisted of a basal diet (27.6 mg of Zn/kg), and the basal diet supplemented with 25 mg of Zn/kg, added as either zinc oxide or zinc methionine. The basal diet was a corn-cottonseed hull-isolated soy protein- based diet (14% CP). Lambs were weighed and blood samples taken at 28-d intervals for determination of serum Zn and alkaline phosphatase activity. Weights and serum Zn were similar (p > 0.10) among treatments at all sampling days. To evaluate immune responses and Zn status during conditions of physiologic stress lambs were administered 100 I.U. of adrenocorticotrophin (ACTH) on d 112 and feed was withheld for 48 h. Cortisol levels were elevated (p < .01) 5 h post ACTH injection, but had returned to initial levels after 48 h. Lymphocyte blastogenesis ([$^3H$]-thymidine incorporation) on d 112 (prior to ACTH injection) and 114 was unaffected (p > .10) by dietary treatment. However, blastogenesis in response to pokeweed mitogen was greater (p < .0001), whereas the response to phytohemagglutinin was reduced (p < .01) following ACTH administration and fasting. Antibody response to administration of porcine red blood cells was unaffected (p > .05) by dietary treatment. These results indicate that, given the Zn concentration of the basal diet, there was no enhancement of immune function by supplemental Zn, either before or after lambs were subjected to stress.

Sol-Gel Encapsulation as Matrix for Potentiometric Nitrite-Selective Membranes Doped with Chloro (5, 10, 15, 20-Tetraphenylporphyrinato) Cobalt (III)

  • Zhou, Hao;Meyerhoff, Mark E.;Bi, Kai-Shun;Park, Sung-Bae
    • Journal of the Korean Electrochemical Society
    • /
    • v.12 no.4
    • /
    • pp.335-341
    • /
    • 2009
  • Organic-inorganic hybrid sol-gel matrices were used as hosts for chloro (5, 10, 15, 20-tetraphenylporphyrinato) cobalt (III) (Co[TPP]Cl), a known ionophore for nitrite. The sol-gel precursor was prepared by the reaction of (3-isocyanopropyl) triethoxysilane with 1,4-butanediol. An appropriate amount of the anion-exchanger, tridodecylmethylammonium chloride (TDMAC) and the plasticizer, tributylphosphate (DBP) were used as membrane additives. On mixing with an acidic catalyst, the sol-state precursors slowly gelled, yielding a membrane in which the active components, Co[TPP]Cl and TDMAC, were encapsulated. The performances of the sol-gel membrane-based electrodes were compared to those of Co[TPP]Cl-based poly(vinyl chloride) (PVC) membrane electrodes. Membranes with a molar ratio of Co[TPP]Cl: TDMAC (1 : 0.1) showed reasonable response slopes toward nitrite. The response slopes were typically 53 mV/decade between $10^{-5.4}$ and $10^{-1.0}\;M$. Selectivities toward nitrite over hydrophilic and small anions such as chloride were somewhat inferior to those observed with PVC-based membranes, but selectivities over lipophilic anions were quite similar. Reduced asymmetry potentials due to protein adsorption were found to occur with the sol-gel matrix relative to PVC-based films when the sensors were employed as a detector in flow-through configuration.

Comparative study on growth of leafy vegetables grown in a hybrid BFT-aquaponics using Japanese eel, Anguilla japonica and hydroponics

  • Lee, Dong-Hoon;Kim, Jeong-Dae
    • Fisheries and Aquatic Sciences
    • /
    • v.24 no.7
    • /
    • pp.260-275
    • /
    • 2021
  • Aquaponics is a cultivation system that combines aquaculture and agricultural hydroponics. This study investigated the productivity of leafy vegetables cultivated in the hybrid biofloc technology-aquaponics (HBFT-AP) using Japanese eel fed two kinds of diets (Mash, commercial powdered feed and extruded pellet [EP]) and hydroponics (HP).The mash was fed to the fish in a type of a dough mixed with water for 6 weeks (Exp1) and switched to the EP containing 2.7% monobasic potassium phosphate (MKP) for subsequent 6 weeks (Exp2). Leafy vegetables of 8 cultivar were employed in the experiment and water quality [dissolved oxygen (DO, mg/L), pH, water temperature (℃), electrical conductivity (EC; ㎲/cm), turbidity (NTU), TAN (NH3 + NH4+) (mg /L), NO2-N (mg/L), NO3-N (mg/L) and PO4-P (mg/L)] was measured 6 times a week. Leafy vegetable productivity (HBFT-AP vs HP) was compared in respective experiment, which was similar or somewhat higher in HBFT-AP. During the 12-week feeding trial, concentrations of nitrite (NO2-N) and phosphorus (PO4-P) were kept low in variability while total ammonia nitrogen (TAN) and NO3-N levels increased with time in HBFT-AP. At the end of two feeding trials, values of weight gain (WG, %), feed efficiency (FE, %), specific growth rate (SGR, %) and protein efficiency ratio (PER) were higher in Exp2 than in Exp1. As well, higher values in hematocrit (PCV, %), plasma K (mEq/L) and inorganic phosphorus (mg/dL) were found (p < 0.05) in Exp2 where fish were fed the EP (EP: 38.60%, 2.80 mEq/L and 7.04 g/dL; Mash: 33.20%, 1.95 mEq/L and 5.50 g/dL). Leafy vegetables in HBFT-AP using Japanese eel fed the EP with MKP 2.7% had a productivity similar (4 kinds of cultivar) or somewhat higher (4 kinds of cultivar) compared to those in HP. Also, Japanese eel fed the EP showed higher values of Pi (m/dL) and K (mEq/L) in plasma compared to those fed commercial powder diet.

Characterization and Mapping of the Bovine FBP1 Gene

  • Guo, H.;Liu, W-S.;Takasuga, A.;Eyer, K.;Landrito, E.;Xu, Shang-zhong;Gao, X.;Ren, H-Y.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.9
    • /
    • pp.1319-1326
    • /
    • 2007
  • Fructose-1,6-bisphosphatase (FBP1) is a key regulatory enzyme of gluconeogenesis that catalyzes the hydrolysis of fructose-1,6-bisphosphate to generate fructose-6-phosphate and inorganic phosphate. Deficiency of fructose-1, 6-bisphosphatase is associated with fasting hypoglycemia and metabolic acidosis. The enzyme has been shown to occur in bacteria, fungi, plants and animals. The bovine FBP1 gene was cloned and characterized in this study. The full length (1,241 bp) FBP1 mRNA contained an open reading frame (ORF) encoding a protein of 338 amino acids, a 63 bp 5' untranslated region (UTR) and a 131 bp 3' UTR. The bovine FBP1 gene was 89%, 85%, 82%, 82% and 74% identical to the orthologs of pig, human, mouse, rat and zebra fish at mRNA level, and 97%, 96%, 94%, 93% and 91% identical at the protein level, respectively. This gene was broadly expressed in cattle with the highest level in testis, and the lowest level in heart. An intronic single nucleotide polymorphism (SNP) (A/G) was identified in the $5^{th}$ intron of the bovine FBP1 gene. Genotyping of 133 animals from four beef breeds revealed that the average frequency for allele A (A-base) was 0.7897 (0.7069-0.9107), while 0.2103 (0.0893-0.2931) for allele B (G-base). Our preliminary association study indicated that this SNP is significantly associated with traits of Average Daily Feed Intake (ADFI) and Carcass Length (CL) (p<0.01). In addition, the FBP1 gene was assigned on BTA8 by a hybrid radiation (RH) mapping method.