• Title/Summary/Keyword: protein tissues

Search Result 1,564, Processing Time 0.037 seconds

Rat Duodenal Mucosa Inositol Monophosphatase; Novel Enzyme of Which Properties are Distinct from Brain Enzyme

  • Kwon, Hyeok-Yil;Lim, Bong-Hee;Park, Hyung-Seo;Lee, Yun-Lyul;Lee, Eun-Hee;Choi, Soo-Young;Park, Hyoung-Jin
    • BMB Reports
    • /
    • v.31 no.3
    • /
    • pp.274-280
    • /
    • 1998
  • An inositol monophosphatase (IMPase) was purified to homogeneity from rat duodenal mucosa for the first time and its enzymatic properties were investigated. Rat duodenal mucosa peculiarly exhibited the highest IMPase activity among various rat tissues examined. By means of ammonium sulfate precipitation, followed by Q-Sepharose, polylysine agarose, reactive-red agarose column chromatography, Uno-Q FPLC, and Bio-Silect FPLC, duodenal IMPase was purified 223-fold to a specific activity of 13.6 U/mg protein. The molecular mass of the native enzyme was estimated to be 48,000 Da on gel filtration. The subunit molecular mass was determined by SDS-PAGE to be 24,000 Da. These results indicate that duodenal IMPase is a dime ric protein made up of identical subunits. Rat duodenal IMPase has distinct properties from brain IMPase. It has a broad spectrum of substrate specificity and is insensitive to $Li^+$. Duodenal IMPase does not absolutely require $Mg^{2+}$ for its catalytic activity. Furthermore, duodenal IMPase is less stable to heat than brain enzyme. It is suggested that the rat duodenal mucosa needs a large amount of IMPase whose properties are quite different from that of the brain enzyme.

  • PDF

AMP-activated protein kinase: implications on ischemic diseases

  • Ahn, Yong-Joo;Kim, Hwe-Won;Lim, Hee-Jin;Lee, Max;Kang, Yu-Hyun;Moon, Sang-Jun;Kim, Hyeon-Soo;Kim, Hyung-Hwan
    • BMB Reports
    • /
    • v.45 no.9
    • /
    • pp.489-495
    • /
    • 2012
  • Ischemia is a blockage of blood supply due to an embolism or a hemorrhage in a blood vessel. When an organ cannot receive oxygenated blood and can therefore no longer replenish its blood supply due to ischemia, stresses, such as the disruption of blood glucose homeostasis, hypoglycemia and hypoxia, activate the AMPK complex. LKB1 and $CaMKK{\beta}$ are essential activators of the AMPK signaling pathway. AMPK triggers proangiogenic effects through the eNOS protein in tissues with ischemic conditions, where cells are vulnerable to apoptosis, autophagy and necrosis. The AMPK complex acts to restore blood glucose levels and ATP levels back to homeostasis. This review will discuss AMPK, as well as its key activators (LKB1 and $CaMKK{\beta}$), as a central energy regulator and evaluate the upstream and downstream regulating pathways of AMPK. We will also discuss how we can control this important enzyme in ischemic conditions to prevent harmful effects in patients with vascular damage.

Transcriptional Activator Elements for Curtovirus C1 Expression Reside in the 3' Coding Region of ORF C1

  • Hur, Jingyung;Buckley, Kenneth J.;Lee, Sukchan;Davis, Keith R.
    • Molecules and Cells
    • /
    • v.23 no.1
    • /
    • pp.80-87
    • /
    • 2007
  • Beet curly top virus (BCTV) and Beet severe curly top virus (BSCTV), members of curtoviruses, encode seven open reading frames (ORFs) within a ~3 kb genome. One of these viral ORFs, C1, is known to play an important role in the early stage of viral infection in plants during initiation of viral DNA replication. We used promoter:: reporter (${\beta}$-glucuronidase) gene fusions in transgenic Arabidopsis to identify the putative promoter region of BCTV ORF C1. Unlike other geminiviruses, the intergenic region of BCTV was not sufficient to promote C1 expression in transgenic plants. When sequences extending into the coding region of C1 were tested, strong expression of the reporter protein was observed in vascular tissues of transgenic plants. This expression was not dependent on the presence of the intergenic regions or proximal 5' portions of the C1 coding region. Transgenic plants expressing a reporter gene under control of the putative complete C1 promoter were inoculated with virus to determine if any viral transcript affected C1 expression. Virus inoculated plants did not show any altered pattern or change in of reporter gene expression level. These results suggest that (1) important transcriptional activator elements for C1 expression reside in the 3' portion of C1 coding area itself, (2) C1 protein does not auto-regulate its own expression and (3) C1 expression of two curtoviruses is controlled differently compared to other geminiviruses.

The Fast Skeletal Muscle Myosin Light Chain Is Differentially Expressed in Smooth Muscle Cells of OVA-challenged Mouse Trachea

  • Kim, Ho-Young;Rhim, TaiYoun;Ahn, Mi-Hyun;Yoon, Pyoung-Oh;Kim, Soo-Ho;Lee, Sang-Han;Park, Choon-Sik
    • Molecules and Cells
    • /
    • v.25 no.1
    • /
    • pp.78-85
    • /
    • 2008
  • In a search for new molecular pathways associated with asthma, we performed an mRNA differential display analysis using total RNA extracted from the tracheal tissues of ovalbumin (OVA)-challenged mice and sham controls. cDNAs corresponding to mRNAs for which expression levels were altered by OVA-challenge were isolate and sequenced. Twenty-eight genes differentially expressed in sham and OVA challenged mice were identified. A GenBank BLAST homology search revealed that they were related to cytoskeleton remodeling, transcription, protein synthesis and modification, energy production, and cell growth and differentiation. Two were selected for further characterization. Up-regulation of both the perinatal skeletal myosin heavy chain (skMHC) and fast skeletal muscle myosin light chain (skMLC) genes was confirmed by RT-PCR of trachea tissue from OVA challenged mice. Overexpression of skMLC protein was observed in the smooth muscle layers of OVA-challenged mice by immunohistochemistry, and the surface areas stained with skMLC antibody increased in the OVA-challenged mice. The overexpression of skMLC in murine asthma may be associated with the changes of bronchial smooth muscle.

Characterization of Chicken By-products by Mean of Proximate and Nutritional Compositions

  • Seong, Pil Nam;Cho, Soo Hyun;Park, Kuyng Mi;Kang, Geun Ho;Park, Beom Young;Moon, Sung Sil;Ba, Hoa Van
    • Food Science of Animal Resources
    • /
    • v.35 no.2
    • /
    • pp.179-188
    • /
    • 2015
  • Though a great amount of chicken by-products are consumed everyday in many countries worldwide, however, no attention has been paid to the investigation of nutritional composition of these by-products. In the present work, the basic information regarding the aspects of nutritional composition of chicken by-products such as; liver, gizzard, heart, lung, crop, small intestines, cecum and duodenum was studied. Our results revealed that the approximate composition range (minimum to maximum) of these by-products was found as such: moisture 76.68-83.23%; fat 0.81-4.53%, protein 10.96-17.70% and calories 983.20-1,426.0 cal/g tissue, in which liver and gizzard had the highest protein content. Liver had higher (p<0.05) vitamin A, B1, B2, B3, B5 and B6 contents in comparison to other remaining byproducts. Total saturated fatty acids (SFA), unsaturated fatty acids (UFA), polyunsaturated fatty acids (PUFA) levels ranged between the by-products from 31.82% to 43.96%, 56.04% to 68.19%, and 18.27% to 32.05%, respectively. Remarkably, all of by-products showed desirable PUFA/SFA ratios. Furthermore, all of chicken by-products, especially liver, contained higher levels of trace elements (e.g., Fe, Mn and Zn) in comparison with those from muscle tissues published in literature. Overall, the study indicated that most of chicken byproducts examined are good sources of essential nutrients and these obtained results will be the useful information to consumers and meat processors.

Molecular Characterization of a thiJ-like Gene in Chinese Cabbage

  • Oh, Kyung-Jin;Park, Yong-Soon;Lee, Kyung-Ah;Chung, Yong-Je;Cho, Tae-Ju
    • BMB Reports
    • /
    • v.37 no.3
    • /
    • pp.343-350
    • /
    • 2004
  • A cDNA clone for a salicylic acid-induced gene in Chinese cabbage (Brassica rapa subsp. pekinensis) was isolated and characterized. The cabbage gene encoding a protein of 392 amino acids contained a tandem array of two thiJ-like sequences. ThiJ is a thiamin biosynthesis enzyme that catalyzes the phosphorylation of hydroxymethylpyrimidine (HMP) to HMP monophosphate. Although the cabbage gene shows a similarity to bacterial thiJ genes, it also shares a similarity with the human DJ-1, a multifunctional protein that is involved in transcription regulation, male fertility, and parkinsonism. The cabbage thiJ-like gene is strongly induced by salicylic acid and a nonhost pathogen, Pseudomonas syringae pv. tomato, which elicits a hypersensitive response in Chinese cabbage. Treatment of the cabbage leaves with BTH, methyl jasmonate, or ethephon showed that the cabbage thiJ-like gene expression is also strongly induced by BTH, but not by methyl jasmonate or ethylene. This indicates that the cabbage gene is activated via a salicylic acid-dependent signaling pathway. Examination of the tissue-specific expression revealed that the induction of the cabbage gene expression by BTH occurs in the leaf, stem, and floral tissues but not in the root.

Pharmacokinetics and Tissue distribution of DWP20373, a Novel Fluoroquinolone, in Rats and Beagle Dogs (신규 플르오로퀴놀롤계 항생물질인 DWP20373의 흰쥐 및 개에서의 체내동태와 조직분포)

  • 조재열;한승희;김병오;남권호;김지연;유영호;이재욱;박명환;김재환
    • Biomolecules & Therapeutics
    • /
    • v.5 no.2
    • /
    • pp.179-186
    • /
    • 1997
  • The pharmacokinetics and tissue distribution of DWP20373, a novel fluoroquinolone, were examined in rats and beagle dogs after a single intravenous and oral administration. Analysis of DWP20373 in plasma, tissue, and urine was performed by both HPLC and microbiological assay. The plasma drug concentration declined biexponentially both rats and beagle dogs. In the rats, the terminal drug elimination half-life (t$_{1}$2$\beta$/) was 64 min (IV) and 57 min (PO) by bioassay, and 76 min (IV) and 77 min (PO) by HPLC. Whereas in beagle dogs, t$_{1}$2$\beta$/ was 196 min (IV) and 350 min (PO). The volume of distribution at steady-state (Vd$_{ss}$ ) was 811 ml/kg (bioassay) and 2061 ml/kg (HPLC) in rats, and 2738 ml/kg (bioassay) in beagle dogs. The total body clearance (Cl$_{t}$) of DWP20373 was 10 ml/min/kg (bioassay) and 7 ml/min/kg (HPLC) in rats, and 11 m1/min/kg (bioassay) in beagle dogs. The extent of bioavailability after oral administration was 49% (bioassay) and 67% (HPLC) in rats, and 84% (bioassay) in beagle dogs. The 24-h urinary recovery, measured by bioassay, was 2.7% after oral dosing and 5.5% after intravenous dosing in rats. Serum protein binding ratio determined at 27g/ml was 78%. This drug was also distributed in tissues in the decreasing order of liver, kidney, spleen, lung, heart, and muscle determined at 30 min after oral administration.on.

  • PDF

Molecular and Biochemical Characterization of Opisthorchis viverrini Calreticulin

  • Chaibangyang, Wanlapa;Geadkaew-Krenc, Amornrat;Vichasri-Grams, Suksiri;Tesana, Smarn;Grams, Rudi
    • Parasites, Hosts and Diseases
    • /
    • v.55 no.6
    • /
    • pp.643-652
    • /
    • 2017
  • Calreticulin (CALR), a multifunctional protein thoroughly researched in mammals, comprises N-, P-, and C-domain and has roles in calcium homeostasis, chaperoning, clearance of apoptotic cells, cell adhesion, and also angiogenesis. In this study, the spatial and temporal expression patterns of the Opisthorchis viverrini CALR gene were analyzed, and calcium-binding and chaperoning properties of recombinant O. viverrini CALR (OvCALR) investigated. OvCALR mRNA was detected from the newly excysted juvenile to the mature parasite by RT-PCR while specific antibodies showed a wide distribution of the protein. OvCALR was localized in tegumental cell bodies, testes, ovary, eggs, Mehlis' gland, prostate gland, and vitelline cells of the mature parasite. Recombinant OvCALR showed an in vitro suppressive effect on the thermal aggregation of citrate synthase. The recombinant OvCALR C-domain showed a mobility shift in native gel electrophoresis in the presence of calcium. The results imply that OvCALR has comparable function to the mammalian homolog as a calcium-binding molecular chaperone. Inferred from the observed strong immunostaining of the reproductive tissues, OvCALR should be important for reproduction and might be an interesting target to disrupt parasite fecundity. Transacetylase activity of OvCALR as reported for calreticulin of Haemonchus contortus could not be observed.

Human rpS3 is involved in DNA repair and cell cycle control

  • Kim, Hag-Dong;Jang, Chang-Young;Kim, oon-Seong;Sung, Ha-Chin;Lee, Jae-Yung;Lee, Byeong-Jae;Kim, Joon
    • Journal of Photoscience
    • /
    • v.10 no.2
    • /
    • pp.195-198
    • /
    • 2003
  • In the cellular response to DNA damaging agents, cells undergo cell cycle arrest or apoptosis against irrepairable DNA damage. RpS3 is known to function as UV DNA repair endonuclease III and ribosomal protein S3. In this study, we used normal and rpS3-overexpressed 293T cells to examine the role of rpS3 in response to DNA damaging agents. When 293T cells transfected with rpS3 were irradiated with UV, the pattern of cell cycle was dramatically changed in comparison with un-transfected 293T cells. We also found that the expression of rpS3 in normal cells was increased by treatment with DNA damaging agents. By means of Western and Northern blot analyses in rat tissues, we showed the expression pattern of rpS3 protein and its mRNA. These data suggest that DNA repair and cell cycle arrest are interrelated to each other through rpS3, and the increased expression of rpS3 seems to regulate the cell cycle arrest by DNA damaging agents.

  • PDF

Cholesterol Biosynthesis from Lanosterol: Development of a Novel Assay Method, Characterization, and Solubilization of Rat Hepatic Microsomal Sterol Δ7-Reductase

  • Lee, Joon-No;Paik, Young-Ki
    • BMB Reports
    • /
    • v.30 no.5
    • /
    • pp.370-377
    • /
    • 1997
  • A novel assay method is described for rapid quantitation of reaction rate of sterol ${\Delta}^7$-reductase (${\Delta}^7$-SR) which catalyzes reduction of the ${\Delta}^7$-double bond of sterols. Of six different organ tissues-liver, small intestine, brain, lung, kidney, and testis-. ${\Delta}^7$-SR activity was detected only in liver (2.30 nmol/min/mg protein) and testis (0.11 nmol/min/mg protein). Using a newly developed method which employs diet-induced enzyme proteins and ergosterol as substrate, we assessed both kinetics ($K_m=210\;{\mu}M$, $V_{max}=1.93\;nmol/min/mg$) and inhibition of the rat hepatic ${\Delta}^7$-SR against well-studied cholesterol lowering agents such as triparanol ($IC_{50}=16\;{\mu}M$). 3-$\beta$-[2-(diethylamino)ethoxy]androst-5-en-17-one (U18666A) ($IC_{50}=5.2\;{\mu}M$), and trans-1.4-bis(2-chlorobenzylaminomethyl)cyclohexane dihydrochloride (AY-9944) ($IC_{50}=0.25\;{\mu}M$). Of the three well-known AY-9944-sensitive cholesterogenic enzymes (i.e., ${\Delta}^7$-SR, sterol ${\Delta}^8$-isomerase, and sterol ${\Delta}^14$-reductase). ${\Delta}^7$-SR was found to be the most sensitive enzyme with a noncompetitive inhibition of this compound ($K_i=0.109\;{\mu}M$). Substrate specificity studies of the microsomal ${\Delta}^7$-SR indicate that the relative reaction rate for 7-dehydrocholesterol and ergosterol are 5.6-fold and 1.6-fold higher than that for lathosterol. ${\Delta}^7$-SR activity was also modulated by feeding rats a diet supplemented with 0.5% ergosterol (>2.6-fold) in addition to 5.0% cholestyramine plus 0.1% lovastatin ($\simeq$5.0-fold). Finally, microsomal ${\Delta}^7$-SR was solubilized by 1.5% 3-[3-(cholamidopropyl)-dimethylammonio]-1-propanesulfonate (CHAPS) and enriched on PEG (0~10%) precipitation, which should be suitable for further purification of the enzyme.

  • PDF