• Title/Summary/Keyword: protein tissues

Search Result 1,564, Processing Time 0.033 seconds

Expression and Characterization of Bovine DNA Methyltransferase I

  • Chang, Yoo-Min;Yang, Byoung-Chul;Hwang, Seong-Soo;Yoon, Jong-Taek;Min, Kwan-Sik
    • Reproductive and Developmental Biology
    • /
    • v.33 no.2
    • /
    • pp.93-98
    • /
    • 2009
  • In this study, bovine Dnmt1 cDNA was sequenced and detected Dnmt1 mRNA level in bovine tissues by northern blot, methylation pattern of genome by southern blot, specific localization of Dnmt1 in mouse and bovine preimplantation embryos by immunocytostaining and Dnmt1 protein level in ovary and testis by western blot. Bovine Dnmt1 cDNA sequence showed more homology with that of human than mouse and rat. The RNA level of Dnmt1 was 10 times higher expression in placenta than other tissues. This indicates that placenta was hypermethylated compared to others organs. The genomic DNA could not be cut by a specific restriction enzyme (HpaII) in placenta, lung and liver of bovine. It suggests that Dnmt1 in some somatic cells was already methylated. Dnmt1, which has the antibody epitope 1316~1616, was distributed in nucleus and cytoplasm including the stage of pronuclear stage and maturation of oocyte and gradually weaken to blastocyst stage compare to negative. In addition, Dnmt1 was strongly expressed in tetraploid embryo and cloned 8-cell than IVF 8-cell. An aberrant pattern of DNA methylation in cloned embryo may be abnormal development of fetus, embryonic lethality and placenta dysfunction. The somatic specific band (190kDa) was appeared in ovary and testis, but oocyte specific band (175kDa) was not. Further investigations are necessary to understand the complex links between the methyltransferases and the transcriptional activity of genes in the cloned bovine tissues.

Development and Characterization of a Specific Anti-Caveolin-1 Antibody for Caveolin-1 Functional Study in Human, Goat and Mouse

  • Ke, Meng-Wei;Jiang, Yan-Nian;Li, Yi-Hung;Tseng, Ting-Yu;Kung, Ming-Shung;Huang, Chiun-Sheng;Cheng, Winston Teng-Kuei;Hsu, Jih-Tay;Ju, Yu-Ten
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.20 no.6
    • /
    • pp.856-865
    • /
    • 2007
  • Caveolin-1 of the caveolin family of proteins regulates mammary gland development and has been shown to play a contradictory role in breast tumor progression. A specific anti-Caveolin-1 antibody will be useful for functional study of Caveolin-1 in different tissues. In this study, we generated a rabbit polyclonal antibody that specifically recognizes the N-terminal amino acids 50-65 of Caveolin-1. This polyclonal antibody specifically reacted with Caveolin-1 extracted from cells of different species, including human epithelial A431 cells, goat primary mammary epithelial cells and mice fibroblast NIH 3T3 cells, by Western blotting. Endogenous Caveolin-1 protein expressing in cells and normal human tissues was detected by this polyclonal antibody using immunocytofluorescent and immunohistochemical staining, respectively. Furthermore, an apparent decrease in Caveolin-1 expression in tumorous breast and colon tissues was detected by this polyclonal antibody. In conclusion, we have identified amino acids 50-65 of Caveolin-1, which contains an epitope that is specific to Caveolin-1 and is conserved in the human, goat and mouse. In future, this anti-Caveolin-1 antibody can be used to examine the progression of breast and colon cancers and to study functions of Caveolin-1 in human, goat and mouse cells.

Epigenetic Changes within the Promoter Regions of Antigen Processing Machinery Family Genes in Kazakh Primary Esophageal Squamous Cell Carcinoma

  • Sheyhidin, Ilyar;Hasim, Ayshamgul;Zheng, Feng;Ma, Hong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.23
    • /
    • pp.10299-10306
    • /
    • 2015
  • The esophageal squamous cell carcinoma (ESCC) is thought to develop through a multi-stage process. Epigenetic gene silencing constitutes an alternative or complementary mechanism to mutational events in tumorigenesis. Posttranscriptional regulation of human leukocyte antigen class I (HLA-I) and antigen processing machinery (APM) proteins expression may be associated with novel epigenetic modifications in cancer development. In the present study, we determined the expression levels of HLA-I antigen and APM components by immunohistochemistry. Then by a bisulfite-sequencing PCR (BSP) approach, we identified target CpG islands methylated at the gene promoter region of APM family genes in a ESCC cell line (ECa109), and further quantitative analysis of CpG site specific methylation of these genes in cases of Kazakh primary ESCCs with corresponding non-cancerous esophageal tissues using the Sequenom MassARRAY platform. Here we showed that the development of ESCCs was accompanied by partial or total loss of protein expression of HLA-B, TAP2, LMP7, tapasin and ERp57. The results demonstrated that although no statistical significance was found of global target CpG fragment methylation level sof HLA-B, TAP2, tapasin and ERp57 genes between ESCC and corresponding non-cancerous esophageal tissues, there was significant differences in the methylation level of several single sites between the two groups. Of thesse only the global methylation level of LMP7 gene target fragments was statistically higher ($0.0517{\pm}0.0357$) in Kazakh esophageal cancer than in neighboring normal tissues ($0.0380{\pm}0.0214$, p<0.05). Our results suggest that multiple CpG sites, but not methylation of every site leads to down regulation or deletion of gene expression. Only some of them result in genetic transcription, and silencing of HLA-B, ERp57, and LMP7 expression through hypermethylation of the promoters or other mechanisms may contribute to mechanisms of tumor escape from immune surveillance in Kazakh esophageal carcinogenesis.

Expression of CYP1A1 and GSTP1 in Human Brain Tumor Tissues in Pakistan

  • Wahid, Mussarat;Mahjabeen, Ishrat;Baig, Ruqia Mehmood;Kayani, Mahmood Akhtar
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.12
    • /
    • pp.7187-7191
    • /
    • 2013
  • Most of the exogenous and endogenous chemical compounds are metabolized by enzymes of xenobiotic processing pathways, including the phase I cytochrome p450 species. Carcinogens and their metabolites are generally detoxified by phase II enzymes like glutathione-S-transferases (GST). The balance of enzymes determines whether metabolic activation of pro-carcinogens or inactivation of carcinogens occurs. Under certain conditions, deregulated expression of xenobiotic enzymes may also convert endogenous substrates to metabolites that can facilitate DNA adduct formation and ultimately lead to cancer development. In this study, we aimed to test the association between deregulation of metabolizing genes and brain tumorigenesis. The expression profile of metabolizing genes CYP1A1 and GSTP1 was therefore studied in a cohort of 36 brain tumor patients and controls using Western blotting. In a second part of the study we analyzed protein expression of GSTs in the same study cohort by ELISA. CYP1A1 expression was found to be significantly high (p<0.001) in brain tumor as compared to the normal tissues, with ~4 fold (OR=4, 95%CI=0.43-37) increase in some cases. In contrast, the expression of GSTP1 was found to be significantly low in brain tumor tissues as compared to the controls (p<0.02). This down regulation was significantly higher (OR=0.05, 95%CI=0.006-0.51; p<0.007) in certain grades of lesions. Furthermore, GSTs levels were significantly down-regulated (p<0.014) in brain tumor patients compared to controls. Statistically significant decrease in GST levels was observed in the more advanced lesions (III-IV, p<0.005) as compared to the early tissue grades (I-II). Thus, altered expression of these xenobiotic metabolizing genes may be involved in brain tumor development in Pakistani population. Investigation of expression of these genes may provide information not only for the prediction of individual cancer risk but also for the prevention of cancer.

Expression of HERC4 in Lung Cancer and its Correlation with Clinicopathological Parameters

  • Zeng, Wen-Li;Chen, Yao-Wu;Zhou, Hui;Zhou, Jue-Yu;Wei, Min;Shi, Rong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.2
    • /
    • pp.513-517
    • /
    • 2015
  • Background: Growing evidence suggests that the members of the ubiquitin-proteasome system (UPS) are important for tumorigenesis. HERC4, one component, is a recently identified ubiqutin ligase. However, the expression level and function role of HERC4 in lung cancer remain unknown. Our objective was to investigate any correlation between HERC4 and development of lung cancer and its clinical significance. Materials and Methods: To determine HERC4 expression in lung cancer, an immunohistochemistry analysis of a tissue microarray containing samples of 10 lung normal tissues, 15 pulmonary neuroendocrine carcinomas, 45 squamous epithelial cancers and 50 adenocarcinomas was conducted. Receiver operating characteristic (ROC) curve analysis was applied to obtain a cut-off point of 52.5%, above which the expression of HERC4 was regarded as "positive". Results: On the basis of ROC curve analysis, positive expression of HERC4 was detected in 0/10 (0.0%) of lung normal tissues, in 4/15 (26.7%) of pulmonary neuroendocrine carcinomas, in 13/45 (28.9%) of squamous epithelial cancers and in 19/50 (38.0%) of adenocarcinomas. It showed that lung tumors expressed more HERC4 protein than adjacent normal tissues (${\chi}^2$=4.675, p=0.031). Furthermore, HERC4 positive expression had positive correlation with pT status (${\chi}^2$=44.894, p=0.000), pN status (${\chi}^2$=43.628, p=0.000), histological grade (${\chi}^2$=7.083, p=0.029) and clinical stage (${\chi}^2$=72.484, p=0.000), but not age (${\chi}^2$=0.910, p=0.340). Conclusions: Our analysis suggested that HERC4 is likely to be a diagnostic biomarker for lung cancer.

Ameliorating Effects of Moxifloxacin on Endotoxin-Induced Acute Lung Injury in Rats (흰쥐에서 내독소로 유도된 급성 폐손상에서 moxofloxacin의 개선효과)

  • Lee, Young-Man;Chae, Whi-Gun
    • Journal of Life Science
    • /
    • v.21 no.8
    • /
    • pp.1100-1108
    • /
    • 2011
  • The immunomodulating effects of moxifloxacin seem to be effective in downregulating inflammatory reactions. This presumed effect was tested in endotoxin (ETX)-induced acute lung injury (ALI) in rats. After moxifloxacin treatment (10 mg/kg) of ETX-given rats, lung myeloperoxidase (MPO) activity, bronchoalveolar-lavage (BAL) protein, and the number of neutrophils in the BAL cells were measured. Light and electron microscopic structures were also examined. Electron microscopic $CeCl_3$ histochemistry for the detection of hydrogen peroxide in the lungs and immunohistochemistry of cytosolic phospholipase A2 (cPLA2) in the lung tissues and BAL cells were performed. To examine the expression of TNF${\alpha}$ in the lungs, western blotting was carried out with the lung tissues. ETX had accumulated neutrophils in the lungs, which was followed by lung leak. Oxidative stress occurred, and increased expression of cPLA2 in the lung tissues and BAL cells was observed in the ETX-given rats. Simultaneously, the expression of TNF${\alpha}$ was enhanced by ETX. Moxifloxacin, however, decreased all these parameters, indicating that ALI may have been ameliorated. Moxifloxacin appears to ameliorate ETX-induced ALI partially through the suppression of cPLA2 in the lungs of rats.

Molecular cloning, expression and characterization of a squalene synthase gene from grain amaranth (Amaranthus cruentus L.)

  • Park, Young-Jun;Nemoto, Kazuhiro;Matsushima, Kenichi;Um, Han-Yong;Choi, Jung-Hoon;Oh, Chan-sung;Nishikawa, Tomotaro
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.89-89
    • /
    • 2017
  • A gene encoding squalene synthase from grain amaranth was cloned and characterized. The full-length cDNA was 1805-bp long and contained a 1248-bp open reading frame encoding a protein of 416 amino acids with a molecular mass of 47.6 kDa. Southern blot analysis revealed that the A. cruentus genome contained a single copy of the gene. Comparison of the cDNA and genomic sequences indicated that the amaranth SQS gene had 12 introns and 13 exons. All of the exons contributed to the coding sequence. The predicted amino acid sequence of the SQS cDNA shared high homology with those of SQSs from several other plants. It contained conserved six domains that are believed to represent crucial regions of the active site. We conducted qRT-PCR analyses to examine the expression pattern of the SQS gene in seeds at different developmental stages and in several tissues. The amaranth SQS gene was low levels of SQS transcripts at the initial stage of seed development, but the levels increased rapidly at the mid-late developmental stages before declining at the late developmental stage. These findings showed that the amaranth SQS is a late-expressed gene that is rapidly expressed at the mid-late stage of seed development. In addition, we observed that the SQS mRNA levels in stems and roots increased rapidly during the four- to six-leaf stage of development. Therefore, our results showed that the expression levels of SQS in stem and root tissues are significantly higher than those in leaf tissues. In present study provides useful information about the molecular characterization of the SQS clone isolated from grain amaranth. Finally, a basic understanding of these characteristics will contribute to further studies on the amaranth SQS.

  • PDF

Gene Expression in Gastric Adenocarcinomas (위선암에서의 유전자 발현)

  • Lee Jong Hoon;Choi Seok Ryeol;Han Sang Young;Hwang Tae Ho;Kim Min Chan;Jung Ghap Joong;Roh Mee Sook;Jeong Jin Sook
    • Journal of Gastric Cancer
    • /
    • v.2 no.4
    • /
    • pp.213-220
    • /
    • 2002
  • Purpose: The cDNA microarray provides a powerful alternative with an unprecedented view in monitoring geneexpression levels and leads to discoveries of regulatory pathways involved in complicated biological processes. Our aim is to explore the different gene-expression patterns in gastric adenocarcinomas. Materials and Methods: By using a cDNA microarray representing 4,600 cDNA clusters, we studied the expression profiling in 10 paired gastric adenocarcinoma samples and in adjacent noncancerous gastric tissues from the same patients. Alterations in the gene-expression levels were confirmed by Vsing Northern blots and reverse-transcription PCR (RT-PCR) in all of 4 randomly selected genes. Results: Genes those were expressed differently in cancer ous and noncancerous tissues were identified. 44 (of which 26 were known) and 92 (of which 43 were known) genes or cDNA were up- and down-regulated, respectively, in more than $80\%$ of the gastric adenocarcinoma samples. In cancer ous tissues, genes related to gene/protein expression, cellcycle regulation, and metabolism were mostly up-regulated whereas genes related to the oncogene/tumor suppressor gene, cell structure/motility, and immunology were mostly down-regulated. The semi-quantitative RT-PCR results for the four genes we tested were consistent with the array findings. Conclusions: These results provide not only a new molecular basis for understanding the biological properties of gastric adenocarcinomas but also a useful resource for future development of therapeutic targets and diagnostic markers for gastric adenocarcinomas.

  • PDF

Upregulated Myc Expression in N-Methyl Nitrosourea (MNU)-induced Rat Mammary Tumours

  • Barathidasan, Rajamani;Pawaiya, Rajveer Singh;Rai, Ram Bahal;Dhama, Kuldeep
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.8
    • /
    • pp.4883-4889
    • /
    • 2013
  • Background: The most common incident cancer and cause of cancer-related deaths in women is breast cancer. The Myc gene is upregulated in many cancer types including breast cancer, and it is considered as a potential anti-cancer drug target. The present study was conducted to evaluate the Myc (gene and protein) expression pattern in an experimental mammary tumour model in rats. Materials and Methods: Thirty six Sprague Dawley rats were divided into: Experimental group (26 animals), which received the chemical carcinogen N-methyl nitrosourea (MNU) and a control group (10 animals), which received vehicle only. c-Myc oncoprotein and its mRNA expression pattern were evaluated using immunohistochemistry (IHC) and semi-quantitative reverse transcription-polymerase chain reaction (RT-PCR), respectively, in normal rat mammary tissue and mammary tumours. The rat glyceraldehyde-3-phosphate dehydrogenase (GAPDH) gene was used as internal control for semi-quantitative RT-PCR. Results: Histopathological examination of mammary tissues and tumours from MNU treated animals revealed the presence of premalignant lesions, benign tumours, in situ carcinomas and invasive carcinomas. Immunohistochemical evaluation of tumour tissues showed upregulation and heterogeneous cellular localization of c-Myc oncoprotein. The expression levels of c-Myc oncoprotein were significantly elevated (75-91%) in all the tumours. Semi-quantitative RT-PCR revealed increased expression of c-Myc mRNA in mammary tumours compared to normal mammary tissues. Conclusions: Further large-scale investigation study is needed to adopt this experimental rat mammary tumour model as an in vivo model to study anti-cancer strategies directed against Myc or its downstream partners at the transcriptional or post-transcriptional level.

Role of Glutathione Redox System on the T-2 Toxin Tolerance of Pheasant (Phasianus colchicus)

  • Fernye, Csaba;Ancsin, Zsolt;Bocsai, Andrea;Balogh, Krisztian;Mezes, Miklos;Erdelyi, Marta
    • Toxicological Research
    • /
    • v.34 no.3
    • /
    • pp.249-257
    • /
    • 2018
  • The purpose of the present study was to evaluate the effects of different dietary concentrations of T-2 toxin on blood plasma protein content, lipid peroxidation and glutathione redox system of pheasant (Phasianus colchicus). A total of 320 one-day-old female pheasants were randomly assigned to four treatment groups fed with a diet contaminated with different concentrations of T-2 toxin (control, 4 mg/kg, 8 mg/kg and 16 mg/kg). Birds were sacrificed at early (12, 24 and 72 hr) and late (1, 2 and 3 weeks) stages of the experiment to demonstrate the effect of T-2 toxin on lipid peroxidation and glutathione redox status in different tissues. Feed refusal and impaired growth were observed with dose dependent manner. Lipid-peroxidation was not induced in the liver, while the glutathione redox system was activated partly in the liver, but primarily in the blood plasma. Glutathione peroxidase activity has changed parallel with reduced glutathione concentration in all tissues. Based on our results, pheasants seem to have higher tolerance to T-2 toxin than other avian species, and glutathione redox system might contribute in some extent to this higher tolerance, in particular against free-radical mediated oxidative damage of tissues, such as liver.