• Title/Summary/Keyword: protein tissues

Search Result 1,564, Processing Time 0.025 seconds

Hypermethylation of Promoter Region of LATS1 - a CDK Interacting Protein in Oral Squamous Cell Carcinomas - a Pilot Study in India

  • Reddy, Vijaya Ramakrishna;Annamalai, Thangavelu;Narayanan, Vivek;Ramanathan, Arvind
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.4
    • /
    • pp.1599-1603
    • /
    • 2015
  • Background: Epigenetic silencing of tumor suppressor genes due to promoter hypermethylation is one of the frequent mechanisms observed in cancers. Hypermethylation of several tumor suppressor genes involved in cell cycle regulation has been reported in many types of tumors including oral squamous cell carcinomas. LATS1 (Large Tumor Suppressor, isoform 1) is a novel tumor suppressor gene that regulates cell cycle progression by forming complexes with the cyclin dependent kinase, CDK1. Promoter hypermethylation of the LATS1 gene has been observed in several carcinomas and also has been linked with prognosis. However, the methylation status of LATS1 in oral squamous cell carcinomas is not known. As oral cancer is one of the most prevalent forms of cancer in India, the present study was designed to investigate the methylation status of LATS1 promoter and associate it with histopathological findings in order to determine any associations of the genetic status with stage of differentiation. Materials and Methods: Tumor chromosomal DNA isolated from biopsy tissues of thirteen oral squamous cell carcinoma biopsy tissues were subjected to digestion with methylation sensitive HpaII enzyme followed by amplification with primers flanking CCGG motifs in promoter region of LATS1 gene. The PCR amplicons were subsequently subjected to agarose gel electrophoresis along with undigested amplification control. Results: HpaII enzyme based methylation sensitive PCR identified LATS1 promoter hypermethylation in seven out of thirteen oral squamous cell carcinoma samples. Conclusions: The identification of LATS1 promoter hypermethylation in seven oral squamous cell carcinoma samples (54%), which included one sample with epithelial dysplasia, two early invasive and one moderately differentiated lesions indicates that the hypermethylation of this gene may be one of the early event during carcinogenesis. To the best of our knowledge, this is the first study to have explored and identified positive association between LATS1 promoter hypermethylation with histopathological features in oral squamous cell carcinomas.

High Cytoplasmic Expression of the Orphan Nuclear Receptor NR4A2 Predicts Poor Survival in Nasopharyngeal Carcinoma

  • Wang, Jian;Yang, Jing;Li, Bin-Bin;He, Zhi-Wei
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.5
    • /
    • pp.2805-2809
    • /
    • 2013
  • Objective: This study aimed at investigating whether the orphan nuclear receptor NR4A2 is significantly associated with clinicopathologic features and overall survival of patients with nasopharyngeal carcinoma (NPC). Methods: Immunohistochemistry was performed to determine NR4A2 protein expression in 84 NPC tissues and 20 non-cancerous nasopharyngeal (NP) tissues. The prognostic significance of NR4A2 protein expression was evaluated using Cox proportional hazards regression models and Kaplan-Meier survival analysis. Results: We did not find a significant association between total NR4A2 expression and clinicopathological variables in 84 patients with NPC. However, we observed that high cytoplasmic expression of NR4A2 was significantly associated with tumor size (T classification) (P = 0.006), lymph node metastasis (N classification) (P = 0.002) and clinical stage (P = 0.017). Patients with higher cytoplasmic NR4A2 expression had a significantly lower survival rate than those with lower cytoplasmic NR4A2 expression (P = 0.004). Multivariate Cox regression analysis analysis suggested that the level of cytoplasmic NR4A2 expression was an independent prognostic indicator for overall survival of patients with NPC (P = 0.033). Conclusions: High cytoplasmic expression of NR4A2 is a potential unfavorable prognostic factor for patients with NPC.

Cloning, Expression, and Regulation of Bovine Cellular Retinoic Acid-binding Protein-II (CRABP-II) during Adipogenesis

  • Jeong, Young Hee;Lee, Sang Mi;Kim, Hye-Min;Park, Hyo Young;Yoon, Duhak;Moon, Seung Ju;Hosoda, Akemi;Kim, Dong-Ho;Saeki, Shigeru;Kang, Man-Jong
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.21 no.11
    • /
    • pp.1551-1558
    • /
    • 2008
  • The mammalian cellular retinoic acid-binding proteins, CRABP-I and CRABP-II, bind retinoic acid which acts as an inducer of differentiation in several biological systems. To investigate a possible role for CRABP-II in bovine adipogenesis, we have cloned bovine CRABP-II cDNA and the coding region for CRABP-I. The predicted amino acid sequences of CRABP-II were highly conserved among several animal species (human, mouse, and rat at 97%, 93%, and 93%, respectively). The expression pattern of bovine CRABP-II was examined in greater details by applying RT-PCR to various bovine tissues. CRABP-II mRNA was expressed in most adipose-containing tissues. Moreover, the expression of CRABP-I and -II mRNA dramatically increased during the differentiation of adipocytes from bovine intramuscular fibroblast-like cells. The effects of retinoic acid on adipocyte differentiation of bovine intramuscular fibroblast-like cells were concentration-dependent. Retinoic acid activated the formation of lipid droplets at a level of 1 nM, whereas inhibition was observed at a level of $1{\mu}M$. CRABP-I gene was up-regulated and CRABP-II gene down-regulated by retinoic acid during adipocyte differentiation. These results suggest that CRABPs may play an important role in the regulation of intracellular retinoic acid concentrations during adipogenesis.

RNA-Seq Transcriptome Analysis of the Cutlass Fish Reveals Photoreceptors Gene Expression in Peripheral Tissues (RNA-Seq transcriptome 분석을 통한 갈치 광수용체 유전자 탐색 및 mRNA 조직발현)

  • Hyeon, Ji-Yeon;Kim, Mun-Kwan;Lim, Bong-Soo;Byun, Jun-Hwan;Moon, Ji-Sung;Kang, Hyeong-Cheol;Hur, Sung-Pyo;Oh, Seong-Rip
    • Ocean and Polar Research
    • /
    • v.39 no.2
    • /
    • pp.149-158
    • /
    • 2017
  • The opsin family of light sensitive proteins family makes up are the universal photoreceptor molecules of all visual systems in the vertebrates including teleosts. They can change their conformation from a resting state to a signaling state upon light absorption, which activates the G-protein coupled receptor, thereby resulting in a signaling cascade that produces physiological responses. However, this species is poorly characterized at molecular level due to little sequence information available in public databases. We have investigated the opsin family of nocturnal cutlass fish using the whole transcriptome sequencing method. The opsin genes were cloned and its expression in the tissues and organs were examined by qPCR. We cloned 6 opsin genes (RRH, Opn4, Rh1, Rh2, VA-opsin, and Opn3) in retina and brain tissue. It contained the seven presumed transmembrane domains that are characteristic of the G-protein-coupled receptor family. However, short wavelength sensitive pigment (SWS) and long wavelength sensitive pigment (LWS) were not detected in this study. The mRNA expression of the 6 photoreceptor genes were detected in retina and peripheral tissue. Our studies will lead to further investigation of the photic entrainment mechanism at molecular and cellular levels in cutlass fish and can be used in comparative studies of other fishes.

Anti-Inflammatory Effect of Asterias amurensis Fatty Acids through NF-κB and MAPK Pathways against LPS-Stimulated RAW264.7 Cells

  • Monmai, Chaiwat;Go, Seok Hyeon;Shin, Il-sik;You, SangGuan;Kim, Dae-ok;Kang, SeokBeom;Park, Woo Jung
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.10
    • /
    • pp.1635-1644
    • /
    • 2018
  • Asterias amurensis (starfish) is a marine organism that is harmful to the fishing industry, but is also a potential source of functional materials. The present study was conducted to analyze the profiles of fatty acids extracted from A. amurensis tissues and their anti-inflammatory effects on RAW264.7 macrophage cells. In different tissues, the component ratios of saturated fatty acids, monounsaturated fatty acids, and polyunsaturated fatty acids differed; particularly, polyunsaturated fatty acids such as dihomo-gamma-linolenic acid (20:3n-6) and eicosapentaenoic acid (20:5n-3) were considerably different. In lipopolysaccharide-stimulated RAW264.7 cells, fatty acids from A. amurensis skin, gonads, and digestive glands exhibited anti-inflammatory activities by reducing nitric oxide production and inducing nitric oxide synthase gene expression. Asterias amurensis fatty acids effectively suppressed the expression of inflammatory cytokines such as tumor necrosis $factor-{\alpha}$, interleukin-$1{\beta}$, and interleukin-6 in lipopolysaccharide-stimulated cells. Cyclooxygenase-2 and prostaglandin $E_2$, which are critical inflammation biomarkers, were also significantly suppressed. Furthermore, A. amurensis fatty acids reduced the phosphorylation of nuclear $factor-{\kappa}B$ p-65, p38, extracellular signal-related kinase 1/2, and c-Jun N-terminal kinase, indicating that these fatty acids ameliorated inflammation through the nuclear $factor-{\kappa}B$ and mitogen-activated protein kinase pathways. These results provide insight into the anti-inflammatory mechanism of A. amurensis fatty acids on immune cells and suggest that the species is a potential source of anti-inflammatory molecules.

Antioxidant Effects of Serotonin and L-DOPA on Oxidative Damages of Brain Synaptosomes

  • Ham, Sang-Soo;Kim, Dong-Hyun;Lee, Suk-Ha;Kim, Yun-Sang;Lee, Chung-Soo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.3 no.2
    • /
    • pp.147-155
    • /
    • 1999
  • Antioxidant effects of serotonin and L-DOPA on neuronal tissues were examined by studying the oxidative damages of brain synaptosomal components. The study further explored the mechanism by which they exert protective actions. Serotonin and L-DOPA (1 ${\mu}M$ to 1 mM) significantly inhibited lipid peroxidation of brain tissues by either $Fe^{2+}$ and ascorbate or t-butyl hydroperoxide in a dose dependent fashion. Protective effect of serotonin on the peroxidative actions of both systems was greater than that of L-DOPA. Protein oxidation of synaptosomes caused by $Fe^{2+}$ and ascorbate was attenuated by serotonin and L-DOPA. Protein oxidation more sensitively responded to L-DOPA rather than serotonin. Serotonin and L-DOPA (100 ${\mu}M$) decreased effectively the oxidation of synaptosomal sulfhydryl groups caused by $Fe^{2+}$ and ascorbate. The production of hydroxyl radical caused by either $Fe^{3+},$ EDTA, H_2O_2$ and ascorbate or xanthine and xanthine oxidase was significantly decreased by serotonin and L-DOPA (1 mM). Equal concentrations of serotonin and L-DOPA restored synaptosomal $Ca^{2+}$ uptake decreased by $Fe^{2+}$ and ascorbate, which is responsible for SOD and catalase. Protective effects of serotonin and L-DOPA on brain synaptosomes may be attributed to their removing action on reactive oxidants, hydroxyl radicals and probably iron-oxygen complex, without chelating action on iron.

  • PDF

THI 52 Inhibits Inducible Nitric Oxide Synthase Gene Expression in RAW 264.7 Cells and Rat Lung Tissue by Lipopolysaccharide

  • Lee, Bog-Kyu;Park, Min-Kyu;Seo, Han-Geuk;YunChoi, Hye-Sook;Lee, Duck-Hyung;Chang, Ki-Churl
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.5 no.5
    • /
    • pp.443-449
    • /
    • 2001
  • Previously we reported that THI 52 inhibits tumor necrosis factor $(TNF)-{\alpha}$ mRNA expression in mouse peritoneal macrophages exposed to LPS plus $IFN-{\gamma}.$ In the present study, the effects of THI 52 on vascular reactivity ex vivo, and iNOS protein expression (rat lung) were investigated in LPS-treated rats. Treatment of THI 52 concentration-dependently reduced not only serum nitrite production but also the expression of iNOS protein in rat lung tissues. Thoracic aorta taken from LPS injected rat for 8 h ex vivo resulted in suppression of vasoconstrictor effects to phenylephrine (PE), which was restored by THI 52 (20 mg/kg) 30 min prior to LPS. When measured iNOS activity, treatment of THI 52 concentration-dependently reduced the enzyme activity in RAW 264.7 cells activated with LPS plus $IFN-{\gamma}.$ Likewise, iNOS activity was significantly reduced in lung tissues taken those rats that were injected THI 52 prior to LPS injection compared with LPS injection alone. These results strongly suggest that THI 52 can suppress iNOS gene expression induced by LPS, and restore the vascular contractility to PE. Thus, THI 52, a new synthetic isoquinoline alkaloid, may be beneficial in inflammatory disorders where production of NO is excessed by iNOS expression.

  • PDF

LINC00703 Acts as a Tumor Suppressor via Regulating miR-181a/KLF6 Axis in Gastric Cancer

  • Yang, Haiyang;Peng, Minqi;Li, Yanjiao;Zhu, Renjie;Li, Xiang;Qian, Zhengjiang
    • Journal of Gastric Cancer
    • /
    • v.19 no.4
    • /
    • pp.460-472
    • /
    • 2019
  • Purpose: Long noncoding RNA 00703 (LINC00703) was found originating from a region downstream of Kruppel-like factor 6 (KLF6) gene, having 2 binding sites for miR-181a. Since KLF6 has been reported as a target of miR-181a in gastric cancer (GC), this study aims to investigate whether LINC00703 regulates the miR-181a/KLF6 axis and plays a functional role in GC pathogenesis. Materials and Methods: GC tissues, cell lines, and nude mice were included in this study. RNA binding protein immunoprecipitation (RIP) and pull-down assays were used to evaluate interaction between LINC00703 and miR-181a. Quantitative real-time polymerase chain reaction and western blot were applied for analysis of gene expression at the transcriptional and protein levels. A nude xenograft mouse model was used to determine LINC00703 function in vivo. Results: We revealed that LINC00703 competitively interacts with miR-181a to regulate KLF6. Overexpression of LINC00703 inhibited cell proliferation, migration/invasion, but promoted apoptosis in vitro, and arrested tumor growth in vivo. LINC00703 expression was found to be decreased in GC tissues, which was positively correlated with KLF6, but negatively with the miR-181a levels. Conclusions: LINC00703 may have an anti-cancer function via modulation of the miR-181a/KLF6 axis. This study also provides a new potential diagnostic marker and therapeutic target for GC treatment.

Biochemical Characterization of 20α-Hydroxysteroid Dehydrogenase

  • Byambaragchaa, Munkhzaya;Min, Kwan-Sik
    • Reproductive and Developmental Biology
    • /
    • v.42 no.2
    • /
    • pp.7-12
    • /
    • 2018
  • In this review, we have tried to summarize the evidence and molecular characterization indicating that $20{\alpha}$-hydroxysteroid dehydrogenase ($20{\alpha}$-HSD) is a group of the aldo-keto reductase (AKR) family, and it plays roles in the modulation and regulation of steroid hormones. This enzyme plays a critical role in the regulation of luteal function in female mammals. We have studied the molecular expression and regulation of $20{\alpha}$-HSD in cows, pigs, deer, and monkeys. The specific antibody against bovine $20{\alpha}$-HSD was generated in a rabbit immunized with the purified recombinant protein. The mRNA expression levels increased gradually throughout the estrous cycle, the highest being in the corpus luteum (CL) 1 stage. The mRNA was also specifically detected in the placental and ovarian tissues during pregnancy. The $20{\alpha}$-HSD protein was intensively localized in the large luteal cells and placental cytotrophoblast villus, glandular epithelial cells of the endometrium, syncytiotrophoblast of the placenta, the isthmus cells of the oviduct, and the basal part of the primary chorionic villi and chorionic stem villus of the placenta and large luteal cells of the CL in many mammalian species. Further studies are needed to determine the functional significance of the $20{\alpha}$-HSD molecule during ovulation, pregnancy, and parturition. This article will review how fundamental information of these enzymes can be exploited for a better understanding of the reproductive organs during ovulation and pregnancy.

Alteration of MRP2 expression and the graft outcome after liver transplantation

  • Yi, Nam-Joon;Kim, Joohyun;Choi, YoungRok;Kim, Heyoung;Lee, Kyoung Bun;Jang, Ja-June;Lee, Jae Young;Lee, Jeong Min;Han, Joon Koo;Lee, Kwang-Woong;Suh, Kyung-Suk
    • Annals of Surgical Treatment and Research
    • /
    • v.95 no.5
    • /
    • pp.249-257
    • /
    • 2018
  • Purpose: Multidrug resistance-associated protein (MRP) 2 is a glutathione conjugate in the canalicular membrane of hepatocytes. Early graft damage after liver transplantation (LT) can result in alteration of MRP2 expression. The purpose of this study was to evaluate the relationship between the pattern of MRP2 alteration and graft outcome. Methods: Forty-one paraffin-embedded liver graft tissues obtained by protocol biopsy within 2 months after LT; these were stained using monoclonal antibodies of MRP2. We selected 15 live donor biopsy samples as a control, that showed homogenous canalicular staining for MRP2. The pattern of canalicular MRP2 staining of graft was classified into 3 types: homogenous (type C0), focal (type C1), and no (type C2,) staining of the canaliculi. Results: In total, 17.1% graft tissues were type C0, 36.6% were type C1, and 46.3% were type C2. The median operation time was longer in patients with type C2 (562.6 minutes) than in patients with type C0 (393.8 minutes) (P = 0.038). The rates of posttransplant complications were higher in patients with type C2 (100%) than in patients with type C0 (42.9%) and C1 (73.3%) (P < 0.001). Conclusion: MRP2 expression pattern was altered in 82.9% after LT. The pattern of MRP2 alteration was associated with longer operation time and higher rates of post-LT complications.