• Title/Summary/Keyword: protein tissues

Search Result 1,564, Processing Time 0.031 seconds

Effects of histochemical staining in microwave-irradiated tissues (마이크로파 처리 고정 조직의 조직염색 효과)

  • Lee, Yoon-Jin;Lee, Sang-Han
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.8
    • /
    • pp.417-424
    • /
    • 2019
  • Despite its superior ability to show distinct cellular morphology and for long-term storage, conventional tissue fixation by formalin has many drawback, including slower fixation, the exposure to harmful chemicals and extensive protein modification. Herein, we assessed the effects of rapid microwave-assisted tissue fixation on histological examination and on protein integrity by comparing these microwave irradiation fixated tissues with the formalin-fixed tissues. One of the paired mouse tissues (liver and kidney) was fixed in formalin and the other was fixed by using microwave irradiation in phosphate buffered saline. Each slide from the paraffin-embedded tissues was examined by H & E staining for the adequacy of fixation and by immunohistochemical staining for antigenicity in a blinded fashion. Evaluation of protein recovery and the protein quality from the fixed tissues were analyzed by the BCA method and Western blotting, respectively. The results from H & E staining and immunohistochemical staining showed that the sections obtained from microwave-fixed tissues under our experimental conditions were comparable to those of the formalin-fixed tissues except for the integrity of RBCs. Furthermore, proteins were effectively extracted from the microwave-fixed tissues with acceptable preservation of the proteins' quality. Taken together, this microwave-assisted tissue processing yields a quick fixation and better protein recovery in higher amounts, as well as the adequacy of fixation and the antigenicity being comparable to formalin-fixed tissues, and this all suggests that this new fixation technique can be applied in an environment where rapid tissue fixation is required.

Leucine rich repeat LGI family member 3: Integrative analyses reveal its prognostic association with non-small cell lung cancer

  • Dong-Seok Kim;Nyoun Soo Kwon;Hye-Young Yun
    • Oncology Letters
    • /
    • v.18 no.3
    • /
    • pp.3388-3398
    • /
    • 2019
  • Leucine rich repeat LGI family member 3 (LGI3) is a member of the LGI protein family. Our previous studies reported that LGI3 was expressed in adipose tissues, brain and skin, where it served roles as a multifunctional cytokine and pro-inflammatory adipokine. It was hypothesized that LGI3 may be involved in cytokine networks in cancer. The present study aimed to analyze differentially expressed genes in non-small cell lung cancer (NSCLC) tissues and NSCLC cohort data, to evaluate the prognostic role of LGI3. Expression microarray and NSCLC cohort data were statistically analyzed by bioinformatic methods, and protein-protein interactions, functional enrichment and pathway, gene coexpression network (GCN) and prognostic association analyses were performed. The results demonstrated that the expression levels of LGI3 and its receptor a disintegrin and metalloproteinase domain-containing protein 22 were significantly decreased in NSCLC tissues. A total of two upregulated genes and 11 downregulated genes in NSCLC tissues were identified as LGI3-regulated genes. Protein-protein interaction network analysis demonstrated that all LGI3-regulated genes that were altered in NSCLC were involved in a protein-protein interaction network cluster. Functional enrichment, Kyoto Encyclopedia of Genes and Genomes pathway and GCN analyses demonstrated the association of these genes with the immune and inflammatory responses, angiogenesis, the tumor necrosis factor pathway, and chemokine and peroxisome proliferator-activated receptor signaling pathways. Analysis of NSCLC cohorts revealed that low expression levels of LGI3 was significantly associated with poor prognosis of NSCLC. Analysis of the somatic mutations of the LGI3 gene in NSCLC revealed that the amino acid residues altered in NSCLC included two single nucleotide polymorphism sites and three phylogenetically coevolved amino acid residues. Taken together, these results suggest that LGI3 may be a potential prognostic marker of NSCLC.

Analysis of Molecular Pathways in Pancreatic Ductal Adenocarcinomas with a Bioinformatics Approach

  • Wang, Yan;Li, Yan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.6
    • /
    • pp.2561-2567
    • /
    • 2015
  • Pancreatic ductal adenocarcinoma (PDAC) is a leading cause of cancer death worldwide. Our study aimed to reveal molecular mechanisms. Microarray data of GSE15471 (including 39 matching pairs of pancreatic tumor tissues and patient-matched normal tissues) was downloaded from Gene Expression Omnibus (GEO) database. We identified differentially expressed genes (DEGs) in PDAC tissues compared with normal tissues by limma package in R language. Then GO and KEGG pathway enrichment analyses were conducted with online DAVID. In addition, principal component analysis was performed and a protein-protein interaction network was constructed to study relationships between the DEGs through database STRING. A total of 532 DEGs were identified in the 38 PDAC tissues compared with 33 normal tissues. The results of principal component analysis of the top 20 DEGs could differentiate the PDAC tissues from normal tissues directly. In the PPI network, 8 of the 20 DEGs were all key genes of the collagen family. Additionally, FN1 (fibronectin 1) was also a hub node in the network. The genes of the collagen family as well as FN1 were significantly enriched in complement and coagulation cascades, ECM-receptor interaction and focal adhesion pathways. Our results suggest that genes of collagen family and FN1 may play an important role in PDAC progression. Meanwhile, these DEGs and enriched pathways, such as complement and coagulation cascades, ECM-receptor interaction and focal adhesion may be important molecular mechanisms involved in the development and progression of PDAC.

Investigation into the Distribution of Total, Free, Peptide-bound, Protein-bound, Soluble-and Insoluble-Collagen Hydroxyproline in Various Bovine Tissues

  • Siddiqi, Nikhat J.;Alhomida, Abdullah S.
    • BMB Reports
    • /
    • v.36 no.2
    • /
    • pp.154-158
    • /
    • 2003
  • Collagen is a family of proteins which consists of several genetically distinct molecular species and is intimately involved in tissue organization, function, differentiation and development. The purpose of this study was to investigate the concentration of different hydroxyproline (Hyp) fractions viz., total, free, peptide-bound, protein-bound, soluble- and insoluble-collagen hydroxyproline (Hyp) in various bovine tissues. Results showed that liver had the highest concentration of free Hyp followed by kidney, brain, spleen, lungs, muscle and heart. Liver also had the highest concentration of peptide-bound collagen Hyp followed by kidney, heart, spleen, lungs, brain and muscle. The concentration of protein-bound collagen Hyp was highest in the liver, followed by kidney, spleen, lungs, muscle, brain and heart. Total Hyp was highest in the liver, followed by kidney, spleen, brain, heart, muscle and lungs. Liver also had significantly high concentration of collagen as compared to other tissues examined (P<0.001). Spleen had the significantly higher concentration of soluble-collagen Hyp when compared to other tissues (P<0.001). This was followed by heart, muscle, lungs, brain, kidney and liver. Heart had the highest concentration of insoluble-collagen Hyp followed by lungs, kidney, liver, muscle, spleen and brain. The variation among the insoluble-collagen Hyp concentration of heart and muscle, spleen and brain was significant (P<0.001). We speculate that these differences could be due to the variation in turn over of rate of collagen metabolism in this species.

Smad4 Expression in Hepatocellular Carcinoma Differs by Hepatitis Status

  • Yao, Lei;Li, Fu-Jun;Tang, Zhi-Qiang;Gao, Shuang;Wu, Qe-Quan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.4
    • /
    • pp.1297-1303
    • /
    • 2012
  • Aims: Primary hepatocellular carcinoma (HCC) is a common malignancy often related to hepatitis viral infection. Smad4 is known to mediate the TGF-${\beta}$ pathway to suppress tumorigenesis. However, the function of Smad4 in HCC is still controversial. In this study we compared levels of Smad4 in HCC tissues with or without hepatitis virus infection and adjacent normal-appearing liver. Methods: Samples from HCC patients were analyzed for Smad4 protein and mRNA expression by immunohistochemistry (IHC), RT-PCR and Western blotting. Results: We found that tumor tissues expressed less Smad4 mRNA and protein than the adjacent tissues. Most HCC tumor tissues were negative for Smad4 in IHC staining, while the majority of adjacent tissues were positively stained. Interestingly, protein levels were higher in HCC tissues with viral hepatitis than those without virus infection. Suppression of expression appeared closely related to HCC, so that Smad4 appears to function as a tumor suppressor gene (TSG). Conclusion: Patients with hepatitis viral infection, at higher risk for HCC, exhibited increased Smad4 protein expression suggesting hepatitis virus may modulate Smad4 expression, which is functionally distinct from its putative role as a TSG. Smad4 expression may thus be an applicable marker for diagnosis and/or a target to develop therapeutic agents for HCC.

Expression and regulation of avian beta-defensin 8 protein in immune tissues and cell lines of chickens

  • Rengaraj, Deivendran;Truong, Anh Duc;Lillehoj, Hyun S.;Han, Jae Yong;Hong, Yeong Ho
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.9
    • /
    • pp.1516-1524
    • /
    • 2018
  • Objective: Defensins are a large family of antimicrobial peptides and components of the innate immune system that invoke an immediate immune response against harmful pathogens. Defensins are classified into alpha-, beta-, and theta-defensins. Avian species only possess beta-defensins (AvBDs), and approximately 14 AvBDs (AvBD1-AvBD14) have been identified in chickens to date. Although substantial information is available on the conservation and phylogenetics, limited information is available on the expression and regulation of AvBD8 in chicken immune tissues and cells. Methods: We examined AvBD8 protein expression in immune tissues of White Leghorn chickens (WL) by immunohistochemistry and quantitative reverse transcription-polymerase chain reaction (RT-qPCR). In addition, we examined AvBD8 expression in chicken T-, B-, macrophage-, and fibroblast-cell lines and its regulation in these cells after lipopolysaccharide (LPS) treatment by immunocytochemistry and RT-qPCR. Results: Our results showed that chicken AvBD8 protein was strongly expressed in the WL intestine and in macrophages. AvBD8 gene expression was highly upregulated in macrophages treated with different LPS concentrations compared with that in T- and B-cell lines in a time-independent manner. Moreover, chicken AvBD8 strongly interacted with other AvBDs and with other antimicrobial peptides as determined by bioinformatics. Conclusion: Our study provides the expression and regulation of chicken AvBD8 protein in immune tissues and cells, which play crucial role in the innate immunity.

Alterations in Mitochondrial DNA Copy Numbers and Mitochondrial Oxidative Phosphorylation (OXPHOS) Protein Levels in Gastric Cancer Tissues and Cell Lines (위암 조직과 세포주에서 mDNA와 OXPHOS 단백질 분석)

  • Siregar, Adrian;Hah, Young-Sool;Moon, Dong Kyu;Woo, Dong Kyun
    • Journal of Life Science
    • /
    • v.31 no.12
    • /
    • pp.1057-1065
    • /
    • 2021
  • Alterations in mitochondrial DNA (mtDNA) copy numbers have been reported in patients with stomach cancer and suggested to play a role in gastric carcinogenesis or gastric cancer progression. However, changes in the levels of mitochondrial proteins or mtDNA-encoded oxidative phosphorylation (OXPHOS) proteins in gastric cancer remain unclear. In this study, we investigated mtDNA contents, mitochondrial protein levels, and mtDNA-encoded OXPHOS protein levels in gastric cancer tissues and cell lines. We correlated mtDNA copy numbers with clinicopathologic features of the gastric cancer samples used in this study and used quantitative PCR to analyze the mtDNA copy numbers of the gastric cancer tissues and cell lines. Western blot analysis was used for assessing the amounts of mitochondrial proteins and mtDNA-encoded OXPHOS proteins. Among the 27 gastric cancer samples, 22 showed a reduction in mtDNA copy numbers. The mtDNA content was increased in the other five samples relative to that in normal matched gastric tissues. Mitochondrial protein and OXPHOS protein levels were reduced in some gastric cancer tissues. However, mitochondrial protein and OXPHOS protein levels in gastric cancer cell lines were not always in line with their mtDNA contents. The mtDNA copy numbers were reduced in five gastric cancer cell lines tested in this study. In summary, this study reports a common reduction in mtDNA contents in gastric carcinoma tissues and cell lines, pointing to the possible involvement of mtDNA content alterations in tumorigenesis of the stomach.

Characterization of Chitinase in Oak Tissues and Changes in Its Activity Related to Water Stress and Inoculation with Hypoxylon atropunctatum

  • Chun, Se-Chul;Fenn, Patrick;Kim, Kyung-Soo
    • The Plant Pathology Journal
    • /
    • v.15 no.3
    • /
    • pp.144-151
    • /
    • 1999
  • Chitinase activities from Shumard oak tissues were determined to study changes in chitinase activities related to water stress. The enzyme extracted in sodium acetate buffer (0.1M, pH 4.5) was assayed by a colorimetric method. In addition, the fungal hyphae of Hypoxylon atropunctatum in xylem tissues of oak were observed through scanning electron microscopy. The enzyme in oak tissues was mainly endochitinase, and optimum pH for enzyme activity was 5. Specific chitinase activities from both of stems held under high relative humidity (ranges of 0.63-1.11 pKatal/$\mu\textrm{g}$ of protein) and stems held under low relative humidity (ranges of 0.41-0.99 pKatal/$\mu\textrm{g}$ of protein) were significantly increased following fungal inoculation with H. atropunctatum. However, there was no significant difference in chitinase activities between tissues held under high and low humidities, which might be due to fungal chitinase. Scanning electron microscopy showed holes in fungal hyphae in the xylem tissues of stems held under high humidity but not in the stems held under ow humidity, suggesting that hyphae might be hydrolyzed by plant hydolases such as chitinase.

  • PDF

Estrogen Receptor Alpha Gene Expression in Breast Cancer Tissues from the Iranian Population - a Pilot Study

  • Hosseini, Arezoo;Gopalan, Vinod;Nassiri, Mohammadreza;Ghaffarzadehgan, Kamran;Aslaminejad, Ali;Ghovvati, Shahrokh;Smith, Robert A.;Lam, Alfred K.Y.
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.20
    • /
    • pp.8789-8791
    • /
    • 2014
  • Estrogen receptor alpha ($ER{\alpha}$) is one of the major sub-types of estrogen receptors. $ER{\alpha}$ plays an important role in cellular proliferation and differentiation, chiefly in mammary tissues. In the present study we aimed to quantify of $ER{\alpha}$ mRNA and protein expression in breast tissues from the Iranian population using a real-time PCR assay. Twenty nine breast tissues including 19 adenocarcinomas and 10 normal controls were recruited from the Iranian population. mRNA extraction and cDNA synthesis were performed from these tissues using commercial kits. $ER{\alpha}$ mRNA and protein expression was quantified using real-time PCR and immunohistochemistry respectively. The results showed high expression of $ER{\alpha}$ mRNA (68%) and protein (53%) in the majority of breast cancer tissues compared to normal breast tissues (p= 0.035). Also, high $ER{\alpha}$ mRNA was associated with tumour size of breast carcinomas. In this study, we first reported the expression of $ER{\alpha}$ in Iranian patients with breast cancers and demonstrated prevalence of the expression to be similar to breast cancers noted in other populations.

Epac: new emerging cAMP-binding protein

  • Lee, Kyungmin
    • BMB Reports
    • /
    • v.54 no.3
    • /
    • pp.149-156
    • /
    • 2021
  • The well-known second messenger cyclic adenosine monophosphate (cAMP) regulates the morphology and physiology of neurons and thus higher cognitive brain functions. The discovery of exchange protein activated by cAMP (Epac) as a guanine nucleotide exchange factor for Rap GTPases has shed light on protein kinase A (PKA)-independent functions of cAMP signaling in neural tissues. Studies of cAMP-Epac-mediated signaling in neurons under normal and disease conditions also revealed its diverse contributions to neurodevelopment, synaptic remodeling, and neurotransmitter release, as well as learning, memory, and emotion. In this mini-review, the various roles of Epac isoforms, including Epac1 and Epac2, highly expressed in neural tissues are summarized, and controversies or issues are highlighted that need to be resolved to uncover the critical functions of Epac in neural tissues and the potential for a new therapeutic target of mental disorders.