• Title/Summary/Keyword: protein tissues

Search Result 1,564, Processing Time 0.038 seconds

Amino Acid Biosynthesis and Gene Regulation in Seed (종자내 아미노산 합성 조절 유전자에 관한 연구)

  • ;;;;;Fumio Takaiwa
    • Proceedings of the Botanical Society of Korea Conference
    • /
    • 1996.07a
    • /
    • pp.61-74
    • /
    • 1996
  • Human and monogastric animals can not synthesize 10 out of the 20 amino asids and therefor need to obtain these from their diet. The plant seed is a major source of dietary protein. It is particular important in their study to increase nutritional quality of the seed storage proteins. The low contents of lysine, asparagine and threonenein various cereal seeds and of cystein and methionine. In legume seeds is due to the low proportions of these amino acids in the major storage proteins, we have tried to apply the three strategies; (1) mutagenesis and selection of specific amino acid analogue resistance, (2) cloning and expression study of lysine biosynthesis related gene, (3) transfomation of lysine rich soybean glycinin gene. The 5-methyltryptophan (5MT) resistant cell lines, SAR1, SAR2 and SAR3 were selected from anther derived callus of rice (Oryza sativa L. "Sasanishiki"). Among these selected cell lines, two (SAR1 and SAR3) were able to grow stably at 200 mg/L of 5MT. Analysis of the freed amino acids in callus shows that 5MT resistant cells (SAR3) accumulated free tryptophan at least up to 50 times higher than those that of the higher than of SAS. These results indicated that the 5MT resistant cell lines are useful in studies of amino acid biosynthesis. Tr75, a rice (Oryza sativa L., var. Sasanishiki) mutant resistant to 5MT was segregated from the progenies of its initial mutant line, TR1. The 5MT resistant of TR75 was inherited in the M8 generations as a single dominant nuclear gene. The content of free amino acids in the TR75 homozygous seeds increased approximately 1.5 to 2.0 fold compared to wild-type seeds. Especially, the contents of tryptophan, phenylalanine and aspartic acid were 5.0, 5.3 and 2.7 times higher than those of wild-type seeds, respectively. The content of lysine is significantly low in rice. The lysine is synthesized by a complex pathway that is predominantly regulated by feedback inhibition of several enzymes including asparginase, aspatate kinase, dihydrodipicolinat synthase, etc. For understanding the regulation mechanism of lysine synthesis in rice, we try to clone the lysine biosynthetic metabolism related gene, DHPS and asparaginase, from rice. We have isolated a rice DHPS genomic clone which contains an ORF of 1044 nucleotides (347 amino acids, Mr. 38, 381 daltons), an intron of 587 nucleotides and 5'and 3'-flanking regions by screening of rice genomic DNA library. Deduced amino acid sequence of mature peptide domain of GDHPS clone is highly conserved in monocot and dicot plants whereas that of transit peptide domain is extremely different depending on plant specie. Southern blot analysis indicated that GDHPS is located two copy gene in rice genome. The transcripts of a rice GDHPS were expressed in leaves and roots but not detected in callus tissues. The transcription level of GDHPS is much higher in leaves indicating enormous chloroplast development than roots. Genomic DNA clones for asparaginase genes were screened from the rice genomic library by using plaque hybridization technique. Twelve different genomic clones were isolated from first and second screening, and 8 of 12 clones were analyzed by restriction patterns and identified by Southern Blotting, Restriction enzyme digestion patterns and Southern blot analysis of 8 clones show the different pattern for asparaginase gene. Genomic Southern blot analysis from rice were done. It is estimated that rice has at least 2-3 copy of asparaginase gene. One of 8 positive clones was subcloned into the pBluescript SK(+) vector, and was constructed the physical map. For transformation of lysine rich storage protein into tobacco, soybean glycinin genes are transformed into tobacco. To examine whether glycinin could be stably accumulated in endosperm tissue, the glycinin cDNA was transcriptionally fused to an endosperm-specific promotor of the rice storage protein glutelin gene and then introduced into tobacco genomic via Agrobacterium-mediated transformation. Consequently the glycinin gene was expressed in a seed-and developmentally-specific manner in transgenic tobacco seeds. Glycinin were targeted to vacuole-derived protein bodies in the endosperm tissue and highly accumulated in the matrix region of many transgenic plant (1-4% of total seed proteins). Synthesized glycinin was processed into mature form, and assembled into a hexamer in a similar manner as the glycinin in soybean seed. Modified glycinin, in which 4 contiguous methionine residues were inserted at the variable regions corresponding to the C - teminal regions of the acidic and basic polypeptides, were also found to be accumulated similarly as in the normal glycinin. There was no apparent difference in the expression level, processing and targeting to protein bodies, or accumulation level between normal and modified glycinin. glycinin.

  • PDF

Molecular Characterization and Expression Analysis of Clathrin-Associated Adaptor Protein 3-δ Subunit 2 (AP3S2) in Chicken

  • Oh, Jae-Don;Bigirwa, Godfrey;Lee, Seokhyun;Song, Ki-Duk
    • Korean Journal of Poultry Science
    • /
    • v.46 no.1
    • /
    • pp.31-37
    • /
    • 2019
  • A chicken clathrin-associated adaptor protein $3-{\delta}$ subunit 2 (AP3S2) is a subunit of AP3, which is involved in cargo protein trafficking to target membrane with clathrin-coated vesicles. AP3S2 may play a role in virus entry into host cells through clathrin-dependent endocytosis. AP3S2 is also known to participate in metabolic disease developments of progressions, such as liver fibrosis with hepatitis C virus infection and type 2 diabetes mellitus. Chicken AP3S2 (chAP3S2) gene was originally identified as one of the differentially expressed genes (DEGs) in chicken kidney which was fed with different calcium doses. This study aims to characterize the molecular characteristics, gene expression patterns, and transcriptional regulation of chAP3S2 in response to the stimulation of Toll-like receptor 3 (TLR3) to understand the involvement of chAP3S2 in metabolic disease in chicken. As a result, the structure prediction of chAP3S2 gene revealed that the gene is highly conserved among AP3S2 orthologs from other species. Evolutionarily, it was suggested that chAP3S2 is relatively closely related to zebrafish, and fairly far from mammal AP3S2. The transcriptional profile revealed that chAP3S2 gene was highly expressed in chicken lung and spleen tissues, and under the stimulation of poly (I:C), the chAP3S2 expression was down-regulated in DF-1 cells (P<0.05). However, the presence of the transcriptional inhibitors, BAY 11-7085 (Bay) as an inhibitor for nuclear factor ${\kappa}B$ ($NF{\kappa}B$) or Tanshinone IIA (Tan-II) as an inhibitor for activated protein 1 (AP-1), did not affect the expressional level of chAP3S2, suggesting that these transcription factors might be dispensable for TLR3 mediated repression. These results suggest that chAP3S2 gene may play a significant role against viral infection and be involved in TLR3 signaling pathway. Further study about the transcriptional regulation of chAP3S2 in TLR3 pathways and the mechanism of chAP3S2 upon virus entry shall be needed.

Characterization of a cDNA Encoding Transmembrane Protein 258 from a Two-spotted Cricket Gryllus bimaculatus (쌍별귀뚜라미(Gryllus bimaculatus)의 GbTmem258 cDNA 클로닝과 발현분석)

  • Kisang Kwon;Honggeun Kim;Hyewon Park;O-Yu Kwon
    • Journal of Life Science
    • /
    • v.33 no.10
    • /
    • pp.828-834
    • /
    • 2023
  • The cDNA that encodes transmembrane protein 258 (Tmem258) was cloned from Gryllus bimaculatus and named GbTmem258. This protein comprises 80 amino acids, has no N-glycosylation site, and contains five potential phosphorylation sites at two serines, two threonines, and one tyrosine. The predicted molecular mass of GbTmem258 is 9.06 kDa, and its theoretical isoelectric point is 5.5. The tertiary structure of GbTmem258 was predicted using the available secondary structure information, which suggests the presence of alpha helices (52.5%), random coils (22.5%), extended strands (16.25%), and beta turns (8.75%). Homology analysis revealed that GbTmem258 exhibits high similarity at the amino-acid level to Tmem258 found in other species. The effect of starvation and refeeding on GbTmem258 mRNA expression was also examined in this study. It was found that GbTmem258 mRNA expression in the hindgut progressively increased throughout the starvation period, peaking at almost 1.5 times the control level after six days of starvation. However, refeeding for one to two days after the six-day starvation period restored GbTmem258 mRNA expression to the control level. In fat body, GbTmem258 mRNA expression was almost 3-fold higher during starvation compared to the control level. Refeeding for one to two days after the six-day fast resulted in a decline in the expression to about a 2.5-fold increase over the control level. Throughout the starving and refeeding periods, no other tissues showed any discernible alterations in GbTmem258 mRNA expression.

The Expression Characterization of Chicken Uncoupling Protein Gene

  • Zhao, Jian-Guo;Li, Hui;Wang, Yu-Xiang;Meng, He
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.11
    • /
    • pp.1552-1556
    • /
    • 2005
  • The UCPs are members of the mitochondrial inner membrane transporter family, present in the mitochondrial inner membrane. Their main function is increasing the energy expenditure via diminishing the resulting production of ATP from mitochondrial oxidative phosphorylation instead of yielding dissipative heat. They are associated with the metabolism of fat and regulation of energy expenditure. The UCP gene can be viewed as the candidate gene for chicken fatness. In the present study, RT-PCR and Northern Blot methods were developed to investigate the expression of the UCP gene in ten tissues including heart, liver, spleen, lung, kidney, gizzard, intestine, brain, breast muscle and abdominal fat of chicken. The results of both RT-PCR and Northern Blot methods showed that the UCP gene expressed specific in breast muscle. The expression levels of UCP gene in breast muscles from egg-type and meat-type chickens of hatching, 2, 4, 6 and 8 wk of age were detected by RT-PCR assay and results showed that the expression levels of UCP gene were related to breeds. Expression level of UCP gene in layers was higher than that in broilers at various weeks of age except at 6 wk. The UCP gene's expression was higher at 6 wk and had no significant difference among other weeks of age in broilers; in layers the expression level of UCP gene had no significant difference among weeks of age. The experiment results also showed that insulin could increase the expression level of UCP gene by 40% compared with control group.

Portal Absorption of Feed Oligo-peptides in Chickens

  • Wang, Lijuan;Ma, Qiugang;Cheng, Ji;Guo, Baohai;Yue, Hongyuan
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.9
    • /
    • pp.1277-1280
    • /
    • 2004
  • The effect of duodenal infusion with feed oligo-peptide solution on portal absorption of amino acids was investigated in poultry under unanaesthetized conditions. Four peptide solutions were used in the experiment: enzymatic hydrolysates from fish meal, soybean meal, cottonseed meal and rapeseed meal proteins with average molecular weights less than 3,000 Da and 1,000 Da, respectively. Intestinal absorptions of these oligo-peptide solutions were compared by determining the concentration of free amino acid (FAA) in portal blood after the duodenal administrations of oligo-peptide solutions. Absorptive intensity and balance were used to estimate the intestinal absorption rate of amino acids. The absorptive intensities of amino acids were highest for the fish and soybean meal oligo-peptides. The ratios of amino acids absorbed in the portal blood from fish and soybean meal oligo-peptides were more similar to the composition of the infused amino acids than that observed from the cottonseed and rapeseed meal oligo-peptides. A positive correlation was found between absorption rate and proportion of PAA in the oligo-peptides. The higher absorption rate could be contributed to the higher proportion of peptide bound amino acids (PAA). The results suggest that fish and soybean meal protein are significantly more easily hydrolyzed into oligo-peptides (p<0.05) in the gastrointestinal tracts of poultry and as such can be utilized more effectively by body tissues.

Pharmacological and electrophysiological characterization of rat P2X currents

  • Li, Hai-Ying;Oh, Seog-Bae;Kim, Joong-Soo
    • International Journal of Oral Biology
    • /
    • v.33 no.1
    • /
    • pp.1-5
    • /
    • 2008
  • Adenosine 5'-triphosphate (ATP) is an important extracellular signaling molecule which is involved in a variety of physiological responses in many different tissues and cell types, by acting at P2 receptors, either ionotropic (P2X) or G protein-coupled metabotropic receptors (P2Y). P2X receptors have seven isoforms designated as $P2X_{1^-}P2X_7$. In this study, we investigated the electrophysiological and pharmacological properties of rat $P2X_{1^-}P2X_4$ currents by using whole-cell patch clamp technique in a heterologous expression system. When ATP-induced currents were analyzed in human embryonic kidney (HEK293) cells following transient transfection of rat $P2X_{1^-}P2X_4$, the currents showed different pharmacological and electrophysiological properties. ATP evoked inward currents with fast activation and fast desensitization in $P2X_{^1-}$ or $P2X_{3^-}$ expressing HEK293 cells, but in $P2X_{2^-}$ or $P2X_{4^-}$ expressing HEK293 cells, ATP evoked inward currents with slow activation and slow desensitization. While PPADS and suramin inhibited $P2X_2$ or $P2X_3$ receptor-mediated currents, they had little effects on $P2X_4$ receptor-mediated currents. Ivermectin potentiated and prolonged $P2X_4$ receptor-mediated currents, but did not affect $P2X_2$ or $P2X_3$ receptor-mediated currents. We suggest that distinct pharmacological and electrophysiological properties among P2X receptor subtypes would be a useful tool to determine expression patterns of P2X receptors in the nervous system including trigeminal sensory neurons and microglia.

Low Expression of the FoxO4 Gene may Contribute to the Phenomenon of EMT in Non-small Cell Lung Cancer

  • Xu, Ming-Ming;Mao, Guo-Xin;Liu, Jian;Li, Jian-Chao;Huang, Hua;Liu, Yi-Fei;Liu, Jun-Hua
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.9
    • /
    • pp.4013-4018
    • /
    • 2014
  • Because of its importance in tumor invasion and metastasis, the epithelial-mesenchymal transition (EMT) has become a research focus in the field of cancer. Recently, evidence has been presented that FoxO4 might be involved in EMT. Our study aimed to detect the expression of FoxO4, E-cadherin and vimentin in non-small cell lung cancers (NSCLCs). We also investigated clinical features and their correlations with the markers. In our study, FoxO4, E-cadherin and vimentin were assessed by immunohistochemistry in a tissue microarray (TMA) containing 150 cases of NSCLC. In addition, the expression level of FoxO4 protein was determined by Western blotting. The percentages of FoxO4, E-cadherin and vimentin positive expression in NSCLCs were 42.7%, 38.7% and 55.3%, respectively. Immunoreactivity of FoxO4 was low in NSCLC when compared with paired normal lung tissues. There were significant correlations between FoxO4 and TNM stage (P<0.001), histological differentiation (P=0.004) and lymph node metastasis (P<0.001), but no significant links with age (P=0.323), gender (P=0.410), tumor size (P=0.084), smoking status (P=0.721) and histological type (P=0.281). Our study showed that low expression of FoxO4 correlated with decreased expression of E-cadherin and elevated expression of vimentin. Cox regression analysis indicated FoxO4 to be an independent prognostic factor in NSCLC (P=0.046). These data suggested that FoxO4 might inhibit the process of EMT in NSCLC, and might therefore be a target for therapy.

Inflammatory Responses in a Benign Prostatic Hyperplasia Epithelial Cell Line (BPH-1) Infected with Trichomonas vaginalis

  • Kim, Sang-Su;Kim, Jung-Hyun;Han, Ik-Hwan;Ahn, Myoung-Hee;Ryu, Jae-Sook
    • Parasites, Hosts and Diseases
    • /
    • v.54 no.2
    • /
    • pp.123-132
    • /
    • 2016
  • Trichomonas vaginalis causes the most prevalent sexually transmitted infection worldwide. Trichomonads have been detected in prostatic tissues from prostatitis, benign prostatic hyperplasia (BPH), and prostate cancer. Chronic prostatic inflammation is known as a risk factor for prostate enlargement, benign prostatic hyperplasia symptoms, and acute urinary retention. Our aim was to investigate whether T. vaginalis could induce inflammatory responses in cells of a benign prostatic hyperplasia epithelial cell line (BPH-1). When BPH-1 cells were infected with T. vaginalis, the protein and mRNA of inflammatory cytokines, such as CXCL8, CCL2, IL-$1{\beta}$, and IL-6, were increased. The activities of TLR4, ROS, MAPK, JAK2/STAT3, and NF-${\kappa}B$ were also increased, whereas inhibitors of ROS, MAPK, PI3K, NF-${\kappa}B$, and anti-TLR4 antibody decreased the production of the 4 cytokines although the extent of inhibition differed. However, a JAK2 inhibitor inhibited only IL-6 production. Culture supernatants of the BPH-1 cells that had been incubated with live T. vaginalis (trichomonad-conditioned medium, TCM) contained the 4 cytokines and induced the migration of human monocytes (THP-1 cells) and mast cells (HMC-1 cells). TCM conditioned by BPH-1 cells pretreated with NF-${\kappa}B$ inhibitor showed decreased levels of cytokines and induced less migration. Therefore, it is suggested that these cytokines are involved in migration of inflammatory cells. These results suggest that T. vaginalis infection of BPH patients may cause inflammation, which may induce lower urinary tract symptoms (LUTS).

Growth and Differentiation Effects of Homer3 on a Leukemia Cell Line

  • Li, Zheng;Qiu, Hui-Ying;Jiao, Yang;Cen, Jian-Nong;Fu, Chun-Mei;Hu, Shao-Yan;Zhu, Ming-Qing;Wu, De-Pei;Qi, Xiao-Fei
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.14 no.4
    • /
    • pp.2525-2528
    • /
    • 2013
  • The Homer protein family, also known as the family of cytoplasmic scaffolding proteins, which include three subtypes (Homer1, Homer2, Homer3). Homer3 can regulate transcription and play a very important role in the differentiation and development for some tissues (e.g. muscle and nervous systems). The current studies showed that Homer3 abnormal expression changes in acute myeloid leukemia (AML). Forced expression of Homer3 in transfected K562 cells inhibited proliferation, influenced the cell cycle profile, affected apoptosis induced by $As_2O_3$ through inhibition of Bcl2 expression, and also promoted cell differentiation induced by 12-O-tetra decanoylphorbol-acetate (TPA). These results showed that Homer3 is a novel gene which plays a certain role in the occurrence and development of AML.

Anti-atherosclerotic Effect of Green Tea in Poluynsaturated Fatty Acids-treated Apo E KO Mice (식이불포화지방산을 섭취한 Apo E KO Mice에서의 녹차의 항동맥경화억제 효과)

  • Kim, Hyo-Sook;Lee, Myoung-Sook
    • Journal of Nutrition and Health
    • /
    • v.44 no.6
    • /
    • pp.465-473
    • /
    • 2011
  • Dietary fatty acids are under intense research to identify anti-atherogenic mechanisms, so we investigated green tea powder (GT) as a protector against atherogenesis originating from lipid peroxidation such as 4-hydroxynonemal (4-HNE) and malondialdehyde (MDA) in different dietary fatty acid-treated apo E KO mice. Growth rate and dietary efficiency were lower in apo E KO mice with or without LA compared to wild type. Plasma total cholesterol (TC) and triacylglycerol (TG) did not correspond to values in other tissues, but TG in heart tissue decreased significantly by GT after linoleic acid (LA) or docosahexaenoic acid (DHA) was administered. LA induced apoptosis as evidenced by changes in aorta morphology and immunohistochemistry. Lipid peroxides (LPO) was increased in apo E KO mice with or without LA corresponding to the accumulation of 4-HNE or MDA in the proximal aorta above the atria. GT consumption tended to reduce the primary causal mechanism of atherogenic phenomena such as oxidizability in both LA and DHA treated atherogenic mice. A high polyunsaturated fatty acids (PUFA) diet involved the changes on stress-induced apoptotic signaling by increasing caspase 3, cytochrome c, and nuclear factor-${\kappa}B$ in the heart tissue, but decreasing the bcl-2 protein. However, GT remarkably reduced the expression of apoptotic signaling, in contrast to the PUFA diet. Therefore, the potential of GT as an anti-atherosclerotic dietary antioxidant was tested in this study.