• Title/Summary/Keyword: protein structures

Search Result 593, Processing Time 0.024 seconds

Effects of Transforming Growth Factor Beta on Cytoskeleton Structure and Extracellular Matrix in Mv1Lu Mink Epithelial Cells

  • Choi, Eui-Yul;Lee, Kyung-Mee;Chung, So-Young;Nham, Sang-Uk;Yie, Se-Won;Chun, Gie-Taek;Kim, Pyeung-Hyun
    • BMB Reports
    • /
    • v.29 no.5
    • /
    • pp.405-410
    • /
    • 1996
  • Previous studies have shown that transforming growth factor beta ($TGF-{\beta}$) is a potent regulator of cell growth and differentiation. To study the effects of $TGF-{\beta}$ on cell morphology and cytoskeleton reorganization, we conducted a survey using Mv1Lu mink lung epithelial cells with antibodies to cytoskeletal proteins and an extracellular matrix protein. While the untreated cells showed a cuboidal shape of typical epithelia, the Mv1Lu cells displayed a drastic shape change in the presence of $TGF-{\beta}$. This alteration was most prominent when near-confluent cells were treated with $TGF-{\beta}$. Since the morphology alteration is known to be accompanied by the reorganization of cytoskeletal proteins in other cell types, we investigated the intracellular distribution of the three major cytoskeletal structures: microfilaments, microtubules, and intermediate filaments. In the microfilament system, $TGF-{\beta}$ induced new stress fiber formation, which was caused primarily by the polymerization of cytoplasmic G-actin. However, $TGF-{\beta}$ appeared not to induce any significant changes in microtubular structures and vimentin filaments as determined by indirect fluorescence microscopy. Finally we confirmed the rapid accumulation of fibronectin by immunoblot analysis and chased the protein locations by immunofluorescence microscopy.

  • PDF

Real-Time Measurement of the Liquid Amount in Cryo-Electron Microscopy Grids Using Laser Diffraction of Regular 2-D Holes of the Grids

  • Ahn, Jinsook;Lee, Dukwon;Jo, Inseong;Jeong, Hyeongseop;Hyun, Jae-Kyung;Woo, Jae-Sung;Choi, Sang-Ho;Ha, Nam-Chul
    • Molecules and Cells
    • /
    • v.43 no.3
    • /
    • pp.298-303
    • /
    • 2020
  • Cryo-electron microscopy (cryo-EM) is now the first choice to determine the high-resolution structures of huge protein complexes. Grids with two-dimensional arrays of holes covered with a carbon film are typically used in cryo-EM. Although semi-automatic plungers are available, notable trial-and-error is still required to obtain a suitable grid specimen. Herein, we introduce a new method to obtain thin ice specimens using real-time measurement of the liquid amounts in cryo-EM grids. The grids for cryo-EM strongly diffracted laser light, and the diffraction intensity of each spot was measurable in real-time. The measured diffraction patterns represented the states of the liquid in the holes due to the curvature of the liquid around them. Using the diffraction patterns, the optimal time point for freezing the grids for cryo-EM was obtained in real-time. This development will help researchers rapidly determine high-resolution protein structures using the limited resource of cryo-EM instrument access.

Preparation and Characterization of Multilayer Microcapsules using Biocompatible Polymers (생체적합성 고분자를 사용한 다층 조립 구조 캡슐의 제조와 특성)

  • Jeon, Woohong;Kim, Gwang Yeon;Kim, Gue-Hyun;Ha, Chang-Sik
    • Korean Chemical Engineering Research
    • /
    • v.48 no.2
    • /
    • pp.178-184
    • /
    • 2010
  • The aim of this work is the fabrication of polyelectrolyte microcapsules composed of biocompatible polymers such as chitosan, heparin and alginate, to encapsulate the fluorescein isothiocyanate(FITC)-albumin, and to investigate the protein release behavior therefrom. Polyelectrolyte capsules with 4-layer structures could be prepared with biocompatible materials by oppositely charged adsorption using melamin-foramide as a template. Transmission electron microscope(TEM), scanning electron microscope(SEM) and optical microscope confirmed hollow capsule structures. Protein release before and after encapsulation was monitored with a UV-Vis spectrometer. Microcapsules have different behaviors depending on the kind of polyelectrolyte polymers, chitosan-heparin capsules or chitosan-alginate capsules. In conclusion, the polyelectrolyte multilayer shells can be switched between an open and closed state by means of tuning the pH value.

Role of eptC in Biofilm Formation by Campylobacter jejuni NCTC11168 on Polystyrene and Glass Surfaces

  • Lim, Eun Seob;Kim, Joo-Sung
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.9
    • /
    • pp.1609-1616
    • /
    • 2017
  • The complex roles of cell surface modification in the biofilm formation of Campylobacter jejuni, a major cause of worldwide foodborne diarrheal disease, are poorly understood. In a screen of mutants from random transposon mutagenesis, an insertional mutation in the eptC gene (cj0256) resulted in a significant decrease in C. jejuni NCTC11168 biofilm formation (<20%) on major food contact surfaces, such as polystyrene and borosilicate glass, when compared with wild-type cells (p < 0.05). In C. jejuni strain 81-176, the protein encoded by eptC modified cell surface structures, such as lipid A, the inner core of lipooligosaccharide, and the flagellar rod protein (FlgG), by attaching phosphoethanolamine. To assess the role of eptC in C. jejuni NCTC11168, adherence and motility tests were performed. In adhesion assays with glass surfaces, the eptC mutant exhibited a $0.77log\;CFU/cm^2$ decrease in adherence compared with wild-type cells during the initial 2 h of the assay (p < 0.05). These results support the hypothesis that the modification of cell surface structures by eptC affects the initial adherence in biofilm formation of C. jejuni NCTC11168. In motility tests, the eptC mutant demonstrated reduced motility when compared with wild-type cells, but wild-type cells with the transposon inserted in a gene irrelevant to biofilm formation (cj1111c) also exhibited decreased motility to a similar extent as the eptC mutant. This suggests that although eptC affects motility, it does not significantly affect biofilm formation. This study demonstrates that eptC is essential for initial adherence, and plays a significant role in the biofilm formation of C. jejuni NCTC11168.

Crystal Structure and Functional Characterization of a Xylose Isomerase (PbXI) from the Psychrophilic Soil Microorganism, Paenibacillus sp.

  • Park, Sun-Ha;Kwon, Sunghark;Lee, Chang Woo;Kim, Chang Min;Jeong, Chang Sook;Kim, Kyung-Jin;Hong, Jong Wook;Kim, Hak Jun;Park, Hyun Ho;Lee, Jun Hyuck
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.2
    • /
    • pp.244-255
    • /
    • 2019
  • Xylose isomerase (XI; E.C. 5.3.1.5) catalyzes the isomerization of xylose to xylulose, which can be used to produce bioethanol through fermentation. Therefore, XI has recently gained attention as a key catalyst in the bioenergy industry. Here, we identified, purified, and characterized a XI (PbXI) from the psychrophilic soil microorganism, Paenibacillus sp. R4. Surprisingly, activity assay results showed that PbXI is not a cold-active enzyme, but displays optimal activity at $60^{\circ}C$. We solved the crystal structure of PbXI at $1.94-{\AA}$ resolution to investigate the origin of its thermostability. The PbXI structure shows a $({\beta}/{\alpha})_8$-barrel fold with tight tetrameric interactions and it has three divalent metal ions (CaI, CaII, and CaIII). Two metal ions (CaI and CaII) located in the active site are known to be involved in the enzymatic reaction. The third metal ion (CaIII), located near the ${\beta}4-{\alpha}6$ loop region, was newly identified and is thought to be important for the stability of PbXI. Compared with previously determined thermostable and mesophilic XI structures, the ${\beta}1-{\alpha}2$ loop structures near the substrate binding pocket of PbXI were remarkably different. Site-directed mutagenesis studies suggested that the flexible ${\beta}1-{\alpha}2$ loop region is essential for PbXI activity. Our findings provide valuable insights that can be applied in protein engineering to generate low-temperature purpose-specific XI enzymes.

Low-Temperature FTIR Spectroscopy of Bacteriorhodopsin and Phoborhodopsin

  • Kandori, Hideki;Furutani, Yuji;Shimono, Kazumi;Iwamoto, Masayuki;Sudo, Yuki;Shichida, Yoshinori;Kamo, Naoki
    • Journal of Photoscience
    • /
    • v.9 no.2
    • /
    • pp.106-109
    • /
    • 2002
  • Archaeal rhodopsins possess retinal molecule as their chromophores, and their light-energy and light-signal conversions are triggered by all-trans to 13-cis isomerization of the retinal chromophore. Relaxation through structural changes of protein then leads to functional processes, proton pump in bacteriorhodopsin (bR) and transducer activation in phoborhodopsin (pR). It is known that sensory rhodopsins can pump protons in the absence of their transducers. Thus, there should be common and specific features in their protein structural changes for function. In this paper, our r ecent studies on pR from Natronobacterium pharaonis (ppR) by means of low-temperature Fourier-transform infrared (FTIR) spectroscopy are compared with those of bR. In particular, protein structural changes upon retinal photoisomerization are studied. Comparative investigation of ppR and bR revealed the similar structures of the polyene chain of the chromophore and water-containing hydrogen-bonding network, whereas the structural changes upon photoisomerization were more extended in ppR than in bR. Extended protein structural changes were clearly shown by the assignment of the C=O stretch of Asnl05. FTIR studies of a ppR mutant with the same retinal binding site as in bR revealed that the Schiff base region is important to determine their colors.

  • PDF

Clustered Segment Index for Efficient Approximate Searching on the Secondary Structure of Protein Sequences (클러스터 세그먼트 인덱스를 이용한 단백질 이차 구조의 효율적인 유사 검색)

  • Seo Min-Koo;Park Sang-Hyun;Won Jung-Im
    • Journal of KIISE:Databases
    • /
    • v.33 no.3
    • /
    • pp.251-260
    • /
    • 2006
  • Homology searching on the primary structure (i.e., amino acid arrangement) of protein sequences is an essential part in predicting the functions and evolutionary histories of proteins. However, proteins distant in an evolutionary history do not conserve amino acid residue arrangements, while preserving their structures. Therefore, homology searching on proteins' secondary structure is quite important in finding out distant homology. In this manuscript, we propose an indexing scheme for efficient approximate searching on the secondary structure of protein sequences which can be easily implemented in RDBMS. Exploiting the concept of clustering and lookahead, the proposed indexing scheme processes three types of secondary structure queries (i.e., exact match, range match, and wildcard match) very quickly. To evaluate the performance of the proposed method, we conducted extensive experiments using a set of actual protein sequences. CSI was proved to be faster than the existing indexing methods up to 6.3 times in exact match, 3.3 times in range match, and 1.5 times in wildcard match, respectively.

Purification and Characterization of a 25 kDa Cathepsin L-like Protease from the Hemocyte of Coleopteran Insect, Tenebrio molitor Larvae

  • Jang, Kyung-Suk;Cho, Mi-Young;Choi, Hye-Won;Lee, Kang-Moon;Kim, Mi-Hee;Lee, Young-Un;Kurata, Shoichiro;Natori, Shunji;Lee, Bok-Luel
    • BMB Reports
    • /
    • v.31 no.4
    • /
    • pp.364-369
    • /
    • 1998
  • Insect plasma protein is abundant in the hemolymph of holometabolous insect larvae and is used as a source of amino acids and energy for construction of adult structures during metamorphosis. In order to understand the mechanism of decomposition of larval plasma proteins by hemocyte protease, we tried to purify a cysteine protease from the hemocyte lysate by using Carbobenzoxy-L-Phenylalanyl-L-Arginine-4-Methyl-Coumaryl-7-Amide (Z-Phe-Arg-MCA) as substrate and to identify plasma proteins that are selectively susceptible to the purified protease. Here, we describe the purification and characterization of a cysteine protease that specifically hydrolyzes the plasma protein of the coleopteran insect, Tenebrio molitor, larvae. The molecular mass of this enzyme was 25 kDa, as determined by SDS-PAGE under reducing conditions. The amino acids sequence of its $NH_{2}-terminus$ was determined to be Leu-Pro-Gly-Gln-Ile-Asp-Trp-Arg-Asp-Lys-Gly. This sequence contained Pro, Asp, and Arg residues, conserved in many papain superfamily enzymes. The specific cysteine protease inhibitors, such as E-64 and leupetin, inhibited its hydrolytic activity. One plasma protein with a molecular mass of 48 kDa was selectively hydrolyzed within 3 h when the purified enzyme and plasma proteins were incubated in vitro. However, the 48 kDa protein was not hydrolyzed by the purified 25 kDa protease in the presence of E-64. Western blotting analysis at various developmental stages showed that the purified enzyme was detected at larvae, pupae, and adult stages, but not the embryo stage.

  • PDF

Melatonin Induced Changes in Specific Growth Rate, Gonadal Maturity, Lipid and Protein Production in Nile Tilapia Oreochromis niloticus (Linnaeus 1758)

  • Singh, Ruchi;Singh, A.K.;Tripathi, Madhu
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.1
    • /
    • pp.37-43
    • /
    • 2012
  • We have investigated the effect of melatonin (MLT) on specific growth rate (SGR% $day^{-1}$), condition factor (k), gonado-somatic-index (GSI), histological structures of gonads, serum as well as gonadal protein and lipid in Nile tilapia Oreochromis niloticus. MLT treatment in the dose of 25 ${\mu}g/L$ for three weeks reduced SGR% $day^{-1}$ ($0.9{\pm}0.04$) as compared to control ($1.23{\pm}0.026$). The GSI value was significantly (p<0.05) reduced to $1.77{\pm}0.253$ from control where it was $2.56{\pm}0.25$. Serum protein level increased from $9.33{\pm}2.90$ mg/ml (control) to $11.67{\pm}1.45$ mg/ml after MLT treatment while there was depressed serum triglycerides ($86.16{\pm}1.078$ mg/dl) and cholesterol ($126.66{\pm}0.88$ mg/dl) as compared to control values where these were $123.0{\pm}1.23$ mg/dl and $132.0{\pm}1.65$ mg/dl respectively. Histological structure of ovary showed small eggs of early perinucleolus stage after MLT treatment while testicular structure of control and MLT treated fish was more or less similar. It is concluded that exogenous melatonin suppressed SGR% $day^{-1}$, GSI, ovarian cellular activity, protein and lipid biosynthesis, in tilapia suggesting that melatonin is useful in manipulating the gonadal maturity in fishes.

Characterization of Wild-Type and Mutated RET Proto-Oncogene Associated with Familial Medullary Thyroid Cancer

  • Masbi, Mohammad Hosein;Mohammadiasl, Javad;Galehdari, Hamid;Ahmadzadeh, Ahmad;Tabatabaiefar, Mohammad Amin;Golchin, Neda;Haghpanah, Vahid;Rahim, Fakher
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.5
    • /
    • pp.2027-2033
    • /
    • 2014
  • Background: We aimed to assess RET proto-oncogene polymorphisms in three different Iranian families with medullary thyroid cancer (MTC), and performed molecular dynamics simulations and free energy stability analysis of these mutations. Materials and Methods: This study consisted of 48 patients and their first-degree relatives with MTC confirmed by pathologic diagnosis and surgery. We performed molecular dynamics simulations and free energy stability analysis of mutations, and docking evaluation of known RET proto-oncogene inhibitors, including ZD-6474 and ponatinib, with wild-type and mutant forms. Results: The first family consisted of 27 people from four generations, in which nine had the C.G2901A (P.C634Y) mutation; the second family consisted of six people, of whom three had the C.G2901T (P.C634F) mutation, and the third family, who included 12 individuals from three generations, three having the C.G2251A (P.G691S) mutation. The automated 3D structure of RET protein was predicted using I-TASSER, and validated by various protein model verification programs that showed more than 96.3% of the residues in favored and allowed regions. The predicted instability indices of the mutated structures were greater than 40, which reveals that mutated RET protein is less thermo-stable compared to the wild-type form (35.4). Conclusions: Simultaneous study of the cancer mutations using both in silico and medical genetic procedures, as well as onco-protein inhibitor binding considering mutation-induced drug resistance, may help in better overcoming chemotherapy resistance and designing innovative drugs.