• Title/Summary/Keyword: protein removal

Search Result 324, Processing Time 0.022 seconds

Treatment of Aquacultural Recirculating Water by Foam Separation - I. Characteristics of Protein Separation- (포말 분리법을 이용한 양어장 순환수 처리 - I Protein 분리특성 -)

  • SUH Kuen-Hack;LEE Min-Gyu
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.28 no.5
    • /
    • pp.599-606
    • /
    • 1995
  • The feasibility of foam separation to remove protein produced from fish culture water was investigated, By assuming foam separation column as a single well-mixed pool, a simplified model for foam separator conditions was alse studied under the batch operation. The model indicated that the protein removal could be described as a first-order reaction whose rate increases with both superficial air velocity and protein concentration in the bulk solution. from ,the results of an experimental study on the effects of superficial air velocity, the protein concentration, temperature, and pH on protein removal, the superficial air velocity and initial protein concentration in bulk solution were found to be important operational factors. Other experimental results important that foam separator operated under batch conditions would be considered as a completely mixed reactor. The protein removal rate by foam separation process was increased proportionally with the superficial air velocity, and the adsorptive removal rate of protein was found to obey Langmuir adsorption formula. The preposed simplified model was verified with the experimental data obtained from this study. Under the experimental range used, both temperature and pH did not affect the protein removal.

  • PDF

Phosphate Removal Using Recombinant Bacteria with Cytoplasmic Phosphate Binding Protein (Phosphate Binding Protein이 세포질에 발현된 재조합 박테리아를 이용한 인 제거)

  • Choi, Suk Soon;Ha, Jeong Hyub;Cha, Hyung Joon
    • Applied Chemistry for Engineering
    • /
    • v.24 no.5
    • /
    • pp.558-561
    • /
    • 2013
  • In the present work, we constructed a recombinant Escherichia coli with cytoplasmic-expressed phosphate-binding protein (PBP) and investigated its phosphate removal in water phase. When the recombinant bacteria were cultured for 6 h to treat phosphate, the removal efficiencies were 90, 49, and 41% for the treatment of 1.0, 1.5, and 2.0 mg/L phosphate, respectively, indicating good specific phosphate removal of our developed system. Also, cell densities of 2.5 and 5.0 Optical density resulted in high phosphate removal efficiencies and ~80% of 2.0 mg/L phosphate was efficiently removed. A novel biotechnology developed in this study could be effectively employed for resolving eutrophication problem in water body.

Changes in Protein Contents and Activities of Proteolytic Enzymes in Medicago sativa During Regrowth

  • Kim, Tae-Hwan
    • Journal of Plant Biology
    • /
    • v.37 no.3
    • /
    • pp.357-363
    • /
    • 1994
  • An expreiment with non-nodulating alfalfa (Medicago sativa L.) plants was designed to investigate the changes in protein contents and the activities of proteolytic enzymes during a regrowth period of 24 d. Shoot removal caused a depression of root growth and significantly reduced protein contents in roots. An initial decline of root proteins for the first 10 d was followed by a rapid recovery from d 11 to 24. The major increase of regrowing shoot weight occurred also from d 11. The activities of aminopeptidase and endoprotease slightly decreased in regrowing leaves, while protein contents remains stable after shoot removal. Roots exhibited source behaviour with a rapid increase of endoprotease activities for the first 10 d of regrowth; about a 370% increase over the initial level was observed. Increase in endoprotease activity in roots coincided with the time of protein remobilization after shoot removal, indicating the important role of endoproteases in protein degradation.

  • PDF

Effect of Air Distributor Pore Size in Foam Separator of Sea Water (해수의 포말분리시 공기분산기 기공크기 영향)

  • SUH Kuen-Hack;KIM Byong-Jin;LEE Jung-Hoon;LIM Jun-Heok;YI Gyeongbeom;KIM Yong-Ha;JO Jae Yoon
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.36 no.3
    • /
    • pp.254-262
    • /
    • 2003
  • Effect of the air distributor pore size for the removal of aquacultural waste, such as protein, total suspended solids (TSS), chemical oxygen demand (COD), turbidity and total ammonia nitrogen (TAN) from sea water was investigated by using foam separator. With the increase of pore size of air distributor, removal rates and efficiency of protein decreased. Removal rate by commercial air stone was in the range between the removal rates by G2 and G4 sintered glass discs. Within the range of pore size distributor from Gl to G4, the removal efficiency of protein were ranged from 21 to $42\%.$ The changes of removal rates and efficiencies of TSS, COD and turbidity were similar to proteins. TAN was removed by stripping. The pore size of air distributor for a higher overall oxygen mass transfer coefficient and saturation efficiency provided the condition for higher protein removal rate. Also the foam separator could be used as an aerator.

Effect of Hydraulic Residence Time on the Removal of Wastes in a Seawater Aquarium using a Foam Separator (활어수조에서 포말분리에 의한 오염물 제거시 수력학적 체류시간 영향)

  • KIM Byong-Jin;SHIN Jeong-Sik;JEONG Ho-Su;NA In-Geol;LEE Min-Su;SUH Kuen-Hack
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.37 no.2
    • /
    • pp.85-90
    • /
    • 2004
  • The effect of the hydraulic residence time (HRT) for the removal of aquarium waste, such as protein, total suspended solids (TSS) and turbidity were investigated by using a foam separator Protein, TSS and turbidity removal efficiencies were increased with the increase of hydraulic residence time. The optimum hydraulic residence time was 0.5 min, and the highest protein and TSS removal rates were $14.4\;g/L{\cdot}day\;and\;38.9\;g/L{\cdot}day,$ respectively. The tendency of turbidity removal rate and efficiency was similar to that of protein.

The Removal Rate of the Constituents of the Litters in the Aquatic Plant Ecosystems I. Phragmites longivalvis Grasslands in a Delta of the Nakdong River (수생식물 생태계에 있어서 낙엽의 구성성분의 유실률 I. 낙동강 삼각주지역의 갈대 초지)

  • 장남기;오경환
    • Asian Journal of Turfgrass Science
    • /
    • v.9 no.4
    • /
    • pp.331-342
    • /
    • 1995
  • An investigation was performed to reveal the removal rates of organic constituents of the litters in a Phragmithea longivalvis grassland in a Delta of the Nakdong River, The removal rates of the inorganic and organic materials are determined by the mathematical models. The removal rates and time required to decay up to a percentage of each organic constituent were calculated using these new models. The removal rates of cold water soluble fractions, other carbohydrates, hot water soluble fractions, cellulose, crude fat, lignin and crude protein were 2.67, 1.39, 1.25, 1.02, 0.92, 0.49 and 0.47, respectively, The periods required to reach half time to the steady state of the removal and accumulation for cold water soluble fractions, other carbohydrates, hot water soluble fractions, cellulose, crude fat, lignin and crude protein of the litter were 0.26, 0.50, 0.55, 0.68, 0.75, 1.41 and 1.48 years, respectively.

  • PDF

The Removal of Mixed Soil of Protein and Fat by Protease (프로테아제를 응용한 단백질과 지질 혼합오구의 제거)

  • Seong, Hye Yeong;Lee, Jeong Suk
    • Textile Coloration and Finishing
    • /
    • v.13 no.2
    • /
    • pp.18-18
    • /
    • 2001
  • This study has examined the removal of mixed soil of protein and fat by protease. Cotton and PET fabrics were soiled by spotting of hemoglobin and triolein, respectively. The soiling order and soil concentration were changed in this procedure. The soiled fabrics were aged at 130℃ for 20 minutes. Protease was added in the alcohol ethoxylate(AE) detergent solution. The removal effciency was evaluated by analysis of protein and/or fat on the fabrics before and after washing, respectively. The detergency of PET fabrics was higher than that of cotton fabrics. The removal efficiency of hemoglobin was improved by protease from cotton and PET fabrics. Especially the removal efficiency of hemoglobin was remarkably improved from cotton fabrics. With the increase of hemoglobin and triolein (1:1) mixed soil, the removal of mixed soil was increased in proportion to mixed soil content up to a certain point. but it began to decrease above the point from cotton fabrics, while it was generally increased from PET fabrics. The detergency of total mixed soil from cotton fabrics was higher in case of soiling order with triolein after hemoglobin than in case of soiling order with triolein before hemoglobin. But the soiling order was not greatly effected in the detergency of total mixed soil from PET fabrics.

The Removal of Mixed Soil of Protein and Fat by Protease (프로테아제를 응용한 단백질과 지질 혼합오구의 제거)

  • 성혜영;이정숙
    • Textile Coloration and Finishing
    • /
    • v.13 no.2
    • /
    • pp.104-113
    • /
    • 2001
  • This study has examined the removal of mixed soil of protein and fat by protease. Cotton and PET fabrics were soiled by spotting of hemoglobin and triolein, respectively. The soiling order and soil concentration were changed in this procedure. The soiled fabrics were aged at $130^\circ{C}$ for 20 minutes. Protease was added in the alcohol ethoxylate(AE) detergent solution. The removal effciency was evaluated by analysis of protein and/or fat on the fabrics before and after washing, respectively. The detergency of PET fabrics was higher than that of cotton fabrics. The removal efficiency of hemoglobin was improved by protease from cotton and PET fabrics. Especially the removal efficiency of hemoglobin was remarkably improved from cotton fabrics. With the increase of hemoglobin and triolein (1:1) mixed soil, the removal of mixed soil was increased in proportion to mixed soil content up to a certain point. but it began to decrease above the point from cotton fabrics, while it was generally increased from PET fabrics. The detergency of total mixed soil from cotton fabrics was higher in case of soiling order with triolein after hemoglobin than in case of soiling order with triolein before hemoglobin. But the soiling order was not greatly effected in the detergency of total mixed soil from PET fabrics.

  • PDF

Loss of Potential Biomarker Proteins Associated with Abundant Proteins during Abundant Protein Removal in Sample Pretreatment

  • Shin, Jihoon;Lee, Jinwook;Cho, Wonryeon
    • Mass Spectrometry Letters
    • /
    • v.9 no.2
    • /
    • pp.51-55
    • /
    • 2018
  • Capture of non-glycoproteins during lectin affinity chromatography is frequently observed, although it would seem to be anomalous. In actuality, lectin affinity chromatography works at post-translational modification (PTM) sites on a glycoprotein which is not involved in protein-protein interactions (PPIs). In this study, serial affinity column set (SACS) using lectins followed by proteomics methods was used to identify PPI mechanisms of captured proteins in human plasma. MetaCore, STRING, Ingenuity Pathway Analysis (IPA), and IntAct were individually used to elucidate the interactions of the identified abundant proteins and to obtain the corresponding interaction maps. The abundant non-glycoproteins were captured with the binding to the selected glycoproteins. Therefore, depletion process in sample pretreatment for abundant protein removal should be considered with more caution because it may lose precious disease-related low abundant proteins through PPIs of the removed abundant proteins in human plasma during the depletion process in biomarker discovery. Glycoproteins bearing specific glycans are frequently associated with cancer and can be specifically isolated by lectin affinity chromatography. Therefore, SACS using Lycopersicon esculentum lectin (LEL) can also be used to study disease interactomes.

Effect of Pretense (Subtilisin Carlsberg) on the Removal of Blood Protein Soil (II) -The Detergency of Hemoglobin from Cotton Fabics- (Protease (Subtilisin Carlsberg) 가 혈액 단백질 오구의 제거에 미치는 영향(II) -헤모글로빈 오구포의 세척성-)

  • 이정숙;김성연
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.20 no.4
    • /
    • pp.655-666
    • /
    • 1996
  • The effect of protease (subtilisin Carlsberg) on the removal of hemoglobin as protein soil was studied. The relation between the renloval and the hydrolysis of hemoglobin by subtilisin Carlsberg was discussed. The soiled babric was prepared by spotting of hemoglobin solution evenly on the cotton fabric and was denatured by steaming. The soiled fabric was washed by using Terg-0-Tometer at various conditions. The removal efficiency was evaluated by analysis of protein on the fabrics before and after washing by means of copper-Folin method. 1. The removal of hemoglobin was increased in proportion to increasing of the enzyme concentration up to a certain point, but it began to decrease above the point. 2. The hemoglobin was removed effectively by adding of subtilisin Carlsberg, and more effectively removed by adding of AOS in the enzyme solution. 3. The removal of hemoglobin deviated from the first order reaction in detergency. 4. The renloval of hemoglobin was highest at $50^{\circ}C$ in detergency, Even at low temperature the removal efficiency of enzyme was relatively higher compared with the hydrolysis of hemoglobin by the enzyme. However the removal of hemoglobin was apparently decreased with the increase of temperature over $60^{\circ}C$. 5. The removal of hemoglobin was relatively high at pH 7.0~8.0 and increased continuously with the increase of pH in detergency 6. In detergency, the removal mechanism of hemoglobin by subtilisin Carlsberg could be explained as follows: Fisrt of all, the enzyme hydrolyzed hemoglobin substrates partially by forming E-S complex at the surface of hemoglobin on the cotton fiber, and decomposed cooperative binding of hemoglobin. Subsequently, the fragments of hemoglobin were easily removed by washing. According as the enzyme penetrated to inner part of hemoglobin gradually, the hemoglobin on the cotton fiber was effectively removed by the repetition of these process. The removal of hemoglobin was more effectively increased by adding both the enzyme and AOS in the washing solution. Therefore, it was regarded that AOS molecules were adsorbed at the hydrophobic surface of denatured hemoglobin, subsequently, decomposed more effectively cooperative binding of hemoglobin, and the fragments of hemoglobin were removed more efficiently by means of the interfacial reaction of AOS.

  • PDF