• Title/Summary/Keyword: protein regulator of cytokinesis 1

Search Result 7, Processing Time 0.024 seconds

Repression of the F-box protein Skp2 is essential for actin damage-induced tetraploid G1 arrest

  • Jo, Yongsam;Shin, Deug Y.
    • BMB Reports
    • /
    • v.50 no.7
    • /
    • pp.379-383
    • /
    • 2017
  • We previously reported that p53 plays a role as a key regulator in the tetraploid G1 checkpoint, which is activated by actin damage-induced cytokinesis blockade and then prevents uncoupled DNA replication and nuclear division without cytokinesis. In this study, we investigated a role of Skp2, which targets CDK2 inhibitor p27/Kip1, in actin damage-induced tetraploid G1 arrest. Expression of Skp2 was reduced, but p27/Kip1 was increased, after actin damage-induced cytokinesis blockade. The role of Skp2 repression in tetraploid G1 arrest was investigated by analyzing the effects of ectopic expression of Skp2. After actin damage, ectopic expression of Skp2 resulted in DNA synthesis and accumulation of multinucleated cells, and ultimately, induction of apoptosis. These results suggest that Skp2 repression is important for sustaining tetraploid G1 arrest after cytokinesis blockade and is required to prevent uncoupled DNA replication and nuclear division without cytokinesis.

Byr4p, a Possible Regulator of Mitosis and Cytokinesis in Fission Yeast, Localizes to the Spindle Pole Body by its C-Terminal Domains

  • Jwa, Mi-Ri;Shin, Se-Jeong;Albright, Charles F.;Song, Ki-Won
    • BMB Reports
    • /
    • v.32 no.1
    • /
    • pp.92-97
    • /
    • 1999
  • Cytokinesis and septation should be coordinated to nuclear division in the cell division cycle for precise transmission of the genome into daughter cells. byr4, an essential gene in fission yeast Schizosaccharomyces pombe, regulates the timing of cytokinesis and septation in a dosage-dependent manner. We examined the intracellular localization of the Byr4 protein by expressing byr4 as a fusion of green fluorescence protein (GFP). The Byr4 protein localizes as a single dot on the nuclear periphery of interphase cells, duplicates before mitosis, and the duplicated dots segregate with the nuclei in anaphase. The behavior of Byr4p throughout the cell cycle strongly suggests that Byr4p is localized to the spindle pole body (SPB), a microtubule organizing center (MTOC) in yeast. The presence of the Byr4 protein in the SPB is consistent with its function to coordinate mitosis and cytokinesis. We also mapped the domains of Byr4p for its proper localization to SPB by expressing various byr4 deletion mutants as GFP fusions. Analyses of the diverse byr4 deletion mutants suggest that the indirect repeats and the regions homologous to the open reading frame (ORF) YJR053W of S. cerevisiae in its C-terminus are essential for its localization to the SPB.

  • PDF

A New Function of Skp1 in the Mitotic Exit of Budding Yeast Saccharomyces cerevisiae

  • Kim, Na-Mil;Yoon, Ha-Young;Lee, Eun-Hwa;Song, Ki-Won
    • Journal of Microbiology
    • /
    • v.44 no.6
    • /
    • pp.641-648
    • /
    • 2006
  • We previously reported that Skp1, a component of the Skp1-Cullin-F-box protein (SCF) complex essential for the timely degradation of cell cycle proteins by ubiquitination, physically interacts with Bfa1, which is a key negative regulator of the mitotic exit network (MEN) in response to diverse checkpoint-activating stresses in budding yeast. In this study, we initially investigated whether the interaction of Skp1 and Bfa1 is involved in the regulation of the Bfa1 protein level during the cell cycle, especially by mediating its degradation. However, the profile of the Bfa1 protein did not change during the cell cycle in skp1-11, which is a SKP1 mutant allele in which the function of Skp1 as a part of SCF is completely impaired, thus indicating that Skp1 does not affect the degradation of Bfa1. On the other hand, we found that the skp1-12 mutant allele, previously reported to block G2-M transition, showed defects in mitotic exit and cytokinesis. The skp1-12 mutant allele also revealed a specific genetic interaction with ${\Delta}bfa1$. Bfa1 interacted with Skp1 via its 184 C-terminal residues (Bfa1-D8) that are responsible for its function in mitotic exit. In addition, the interaction between Bfa1 and the Skp1-12 mutant protein was stronger than that of Bfa1 and the wild type Skp1. We suggest a novel function of Skp1 in mitotic exit and cytokinesis, independent of its function as a part of the SCF complex. The interaction of Skp1 and Bfa1 may contribute to the function of Skp1 in the mitotic exit.

A Cancer-specific Promoter for Gene Therapy of Lung Cancer, Protein Regulator of Cytokinesis 1 (PRC1) (폐암의 유전자 치료법을 위한 암특이적인 PRC1 프로모터)

  • Cho, Young-Hwa;Yun, Hye-Jin;Kwon, Hee-Chung;Kim, Hee-Jong;Cho, Sung-Ha;Kang, Bong-Su;Kim, Yeun-Ju;Seol, Won-Gi;Park, Kee-Rang
    • Journal of Life Science
    • /
    • v.18 no.10
    • /
    • pp.1395-1399
    • /
    • 2008
  • We have recently reported the PRC1 promoter as a promoter candidate to control expression of transcriptionally targeted genes for breast cancer gene therapy. We tested whether the PRC1 promoter could be also applied for the lung cancer gene therapy. In the transient transfection assay with naked plasmids containing the luciferase fused to the PRC1 promoter, the promoter showed little activity in the normal lung cell line, MRC5. However, in the lung cancer A549 cells, PRC1 showed approximately 30-fold activation which was similar to the survivin promoter, the gene whose promoter has been already reportedas a candidate for the gene therapy of lung cancer. In viral systems, the PRC1 promoter showed approximately 75% and 66% of transcriptional activity compared to the CMV promoter in the adeno-associated virus (AAV) and the adenovirus (AV) systems, respectively. However, the PRC1 promoter in either AAV or AV showed approximately 20% activity compared to the CMV promoter in the normal lung cells. In addition, human lung tumor xenograft mice showed that the PRC1 promoter activity was as strong as the CMV activity in vivo. Taken together, these results suggested that PRC1 might be a potential promoter candidate for transcriptionally targeted lung cancer gene therapy.

Characterization of a Putative F-box Motif in Ibd1p/Bfalp, a Spindle Checkpoint Regulator of Budding Yeast Saccharomyces cerevisiae

  • Lee, Kyum-Jung;Hyung-Seo;Kiwon Song
    • Journal of Microbiology
    • /
    • v.39 no.4
    • /
    • pp.286-292
    • /
    • 2001
  • During mitosis. the proper segregation of duplicated chromosomes is corrdinated by a spindle check-point. The bifurcated spindle checkpoint blocks cell cycle progression at metaphase by monitoring unattached kinetochores and inhibits mitotic exit in response to the misorientation of the mitotic spin- dle Ibd1p/Bfa1p is a spindle checkpoint regulator of budding yeast in the Bub2p checkpoint pathway for mitotic exit and its disruption abolishes mitotic arrest when proper organization of the mitotic spin-dls inhibited. Ibd1p/Bfa1p localizes to the spindle pole body, a microtublue-organizing center in yeast, and its overexpression arrests the cell cycle in 80% of cells with an enlarged budy at mitosis and in 20 % of cells with multiple buds. In this study, we found that the C-terminus of Ibd1p/Bfa1p phys-ically interacts with Skp1p, a key component of SCF (Skp1/cullin/F-box) complex for ubiquition-medi-ated proteolysis of cel cycle regulatores as well as an evolutionally conserved kinetochore protein for cell cycle progression. A putative F-box motif was found in the C-terminus of Ibd1p/Bfa1p and its function was investigated by making mutants of conserved residues in the motif. These Ibd1p/Bfa1p mutants of a putative F-box interacted with SKp1p in vitro by two-hybrid assays as wild type Ibd1p/Bfa1p. Also these Ibd1p/Bfa1p utants displayed the overexpression phenotypes of wild type Ibd1p, when over-expressed under inducible promoters . These results suggest that a putative F-box motif of Ibd1p/Bfa1p is not essential for the interaction with SKp1p and its function in mitotic exit and cytokinesis.

  • PDF

Polo-Like Kinases (Plks), a Key Regulator of Cell Cycle and New Potential Target for Cancer Therapy

  • Lee, Su-Yeon;Jang, Chuljoon;Lee, Kyung-Ah
    • Development and Reproduction
    • /
    • v.18 no.1
    • /
    • pp.65-71
    • /
    • 2014
  • Cell cycle process is regulated by a number of protein kinases and among them, serine/threonine kinases carry phosphate group from ATP to substrates. The most important three kinase families are Cyclin-dependent kinase (Cdk), Polo-like kinase (Plk), and Aurora kinase. Polo-like kinase family consists of 5 members (Plk1-Plk5) and they are involved in multiple functions in eukaryotic cell division. It regulates a variety of aspects such as, centrosome maturation, checkpoint recovery, spindle assembly, cytokinesis, apoptosis and many other features. Recently, it has been reported that Plks are related to tumor development and over-expressed in many kinds of tumor cells. When injected the anti-Plk antibody into human cells, the cells show aneuploidy, and if inhibit Plks, most of the mitotic cell division does not proceed properly. For that reasons, many inhibitors of Plk have been recently emerged as new target for remedy of the cancer therapeutic research. In this paper, we reviewed briefly the characteristics of Plk families and how Plks work in regulating cell cycles and cancer formation, and the possibilities of Plks as target for cancer therapy.

MicroRNA-766-3p Inhibits Tumour Progression by Targeting Wnt3a in Hepatocellular Carcinoma

  • You, Yu;Que, Keting;Zhou, Yun;Zhang, Zhen;Zhao, Xiaoping;Gong, Jianpin;Liu, Zuojin
    • Molecules and Cells
    • /
    • v.41 no.9
    • /
    • pp.830-841
    • /
    • 2018
  • Recent studies have indicated that microRNAs (miRNAs) play an important role in hepatocellular carcinoma (HCC) progression. In this study, we showed that miR-766-3p was decreased in approximately 72% of HCC tissues and cell lines, and its low expression level was significantly correlated with tumour size, TNM stage, metastasis, and poor prognosis in HCC. Ectopic miR-766-3p expression inhibited HCC cell proliferation, colony formation, migration and invasion. In addition, we showed that miR-766-3p repressed Wnt3a expression. A luciferase reporter assay revealed that Wnt3a was a direct target of miR-766-3p, and an inverse correlation between miR-766-3p and Wnt3a expression was observed. Moreover, Wnt3a up-regulation reversed the effects of miR766-3p on HCC progression. In addition, our study showed that miR-766-3p up-regulation decreased the nuclear ${\beta}-catenin$ level and expression of Wnt targets (TCF1 and Survivin) and reduced the level of MAP protein regulator of cytokinesis 1 (PRC1). However, these effects of miR-766-3p were reversed by Wnt3a up-regulation. In addition, PRC1 upregulation increased the nuclear ${\beta}-catenin$ level and protein expression of TCF1 and Survivin. iCRT3, which disrupts the ${\beta}-catenin-TCF4$ interaction, repressed the TCF1, Survivin and PRC1 protein levels. Taken together, our results suggest that miR-766-3p down-regulation promotes HCC cell progression, probably by targeting the Wnt3a/PRC1 pathway, and miR-766-3p may serve as a potential therapeutic target in HCC.