• Title/Summary/Keyword: protein refolding

Search Result 91, Processing Time 0.023 seconds

Expression in Escherichia coli of a Putative Human Acetohydroxyacid Synthase

  • Duggleby, Ronald G.;Kartikasari, Apriliana E.R.;Wunsch, Rebecca M.;Lee, Yu-Ting;Kil, Mee-Wha;Shin, Ju-Young;Chang, Soo-Ik
    • BMB Reports
    • /
    • v.33 no.3
    • /
    • pp.195-201
    • /
    • 2000
  • A human gene has been reported that may encode the enzyme acetohydroxyacid synthase. Previously this enzyme was thought to be absent from animals although it is present in plants and many microorganisms. In plants, this enzyme is the target of a number of commercial herbicides and the use of these compounds may need to be reassessed if the human enzyme exists and proves to be susceptible to inhibition. Here we report the construction of several plasmid vectors containing the cDNA sequence for this protein, and their expression in Escherichia coli. High levels of expression were observed, but most of the protein proved to be insoluble. The small amounts of soluble protein contained little or no acetohydroxyacid synthase activity. Attempts to refold the insoluble protein were successful insofar as the protein became soluble. However, the refolded protein did not gain any acetohydroxyacid synthase activity. In vivo complementation tests of an E. coli mutant produced no evidence that the protein is active. Incorrect folding, or the lack of another subunit, may explain the data but we favor the interpretation that this gene does not encode an acetohydroxyacid synthase.

  • PDF

Molecular Chaperonic Function of C-Reactive Protein Induced by Heating in HT-29 Human Colon Carcinoma Cells

  • Lee, Soo-Young;Jung, Hyun-Jung;Kim, Hyun-Soo;Lee, Seung-Chul;Lee, Si-Back;Joe, Jae-Hoon;Kim, You-Mie
    • BMB Reports
    • /
    • v.33 no.5
    • /
    • pp.407-411
    • /
    • 2000
  • The effects of heat shock, or all-trans retinoic acid, on the expression of the C-reactive protein mRNA in the HT-29 human colon carcinoma cells, as well as the functional role of the C-reactive protein as a molecular chaperone, were studied. The expression level of the C-reactive protein mRNA in the HT-29 cells was increased time-dependently when exposed to heat-shock, and dose-dependently when treated with all-trans retinoic acid. The activities of transglutaminase C and K in the HT-29 cells were significantly increased when treated with all-trans retinoic acid. The C-reactive protein prevented thermal aggregation of the citrate synthase and stabilized the target enzyme, citrate synthase. The C-reactive protein promoted functional refolding of the urea-denatured citrate synthase up to 40-70%. These results suggest that the C-reactive protein, which is induced in human colon carcinoma cells, when heated or treated with all-trans retinoic acid has in a part functional activity of the molecular chaperone.

  • PDF

The rate-determining step in the dark state recovery process in the photocycle of PYP

  • Sasaki, Jun;Kumauchi, Masato;Hamada, Norio;Tokunaga, Fumio
    • Journal of Photoscience
    • /
    • v.9 no.2
    • /
    • pp.130-133
    • /
    • 2002
  • The last step in the photocycle of photoactive yellow protein (PYP) is a spontaneous recovery of the dark state from the active state in which the p-coumaric acid chromophore is thermally isomerized, concomitantly with the deprotona- tion of the chtomophore and the refolding of the protein moicty. For the purpose of understanding the mechanism of the thermal back-isomerization, we have investigated the rate-determining step by analyzing mutant PYPs of Met100, which was previously shown to play a major role in facilitating the reaction (1). The mutation to Lys, Leu, Ala, or Glu decelerated the dark state recovery by 1 to 3 three orders of magnitude. By evaluating temperature-dependence and pH-dependence of the kinetics of the dark state recovery, it was found that the retardation by mutations resulted from elevation of the activation enthalpy ( H$\^$┿/) and that the pKa of the chromophore, which was affected by the mutation, is in a linier correlation with the amplitude of the rate constants. It was, therefore, deduced from the correlation that the free energy for crossing the activated state in the dark recovery process is proportional to the free energy for the deprotonation of the chromophore, identifying the rate-determining step as the deprotonation of the chromophore. (1) Devanathan, S. Genick, U. K. Canestrelli, I. L. Meyer, T. E. Cusanovich, M. A. Getzoff, E. D. Tollin, G., Biochemistry 1998, 37, 11563 - 11568

  • PDF

Heat Shock Protein 90 Regulates the Stability of c-Jun in HEK293 Cells

  • Lu, Chen;Chen, Dan;Zhang, Zhengping;Fang, Fang;Wu, Yifan;Luo, Lan;Yin, Zhimin
    • Molecules and Cells
    • /
    • v.24 no.2
    • /
    • pp.210-214
    • /
    • 2007
  • The 90-kDa heat shock protein (HSP90) normally functions as a molecular chaperone participating in folding and stabilizing newly synthesized proteins, and refolding denatured proteins. The HSP90 inhibitor geldanamycin (GA) occupies the ATP/ADP binding pocket of HSP90 so inhibits its chaperone activity and causes subsequent degradation of HSP90 client proteins by proteasomes. Here we show that GA reduces the level of endogenous c-Jun in human embryonic kidney 293 (HEK293) cells in a time and dose dependent manner, and that this decrease can be reversed by transfection of HSP90 plasmids. Transfection of HSP90 plasmids in the absence of GA increases the level of endogenous c-Jun protein, but has no obvious affect on c-Jun mRNA levels. We also showed that HSP90 prolongs the half-life of c-Jun by stabilizing the protein; the proteasome inhibitor N-benzoyloxycarbonyl (Z)-Leu-Leu-leucinal (MG132) blocks the degradation of c-Jun promoted by GA. Transfection of HSP90 plasmids did not obviously alter phosphorylation of c-Jun, and a Jun-2 luciferase activity assay indicated that over-expression of HSP90 elevated the total protein activity of c-Jun in HEK293 cells. All our evidence indicates that HSP90 stabilizes c-Jun protein, and so increases the total activity of c-Jun in HEK293 cells.

Increased Refolding Yield of Disulfide Bond Bridged Fab-Toxin Homodimers by the Insertion of CH3 Domains

  • Song Jeong-Wha;Won Jae-Seon;Lee Yong-Chan;Choe Mu-Hyeon
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.7
    • /
    • pp.1104-1110
    • /
    • 2006
  • Recombinant antibody-toxin is a bifunctional protein that binds and kills a target cell expressing a specific antigen on the surface of the cell, and its structure is chimeric, in which a toxin is fused to an antigen-binding domain such as scFv or Fab. Divalent antibody-toxin molecules showed higher cytotoxicities against cancer cell lines than monovalent molecules. However, the yields of the divalent molecules were very low. In this study, we introduced the CH2, CH3, or CH2-CH3 (=Fc) domain of antibody in the middle of the Fab-toxin between the hinge region of human IgG1 and the toxin domain to increase the yield. The covalently bonded dimer could be formed by three disulfide bridges from cysteine residues in the hinge region. The molecule with the CH3 domain showed about 3-fold higher dimerization yield than previously constructed Fab-toxin molecules, while maintaining the cytotoxic activity comparable to that of scFv-toxin. However, the introduction of CH2 or Fc domain to the same position showed little effect on the dimerization yield. We also observed that the introduction of the CH3 region made it possible to form noncovalently associated dimer molecules.

Solid-phase refolding of immobilized enterokinase for fusion protein cleavage

  • Kim, Min-Young;Na, Sea-Jin;Suh, Chang-Woo;Kim, Chang-Ho;Lee, Na-Hyun;Lee, Eun-Kyu
    • 한국생물공학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.555-559
    • /
    • 2003
  • EK를 고정화하기 위해 니켈 친화결합 방법과 공유 결합형 고정화 방법을 수행하였으며 니켈 친화결합이 공유 결합형 고정화보다 높은 고정화 수율과 activity를 나타냈다. 풀림과 재접힘을 이용한 효소의 활성 회복은 공유결합형 고정화가 니켈 친화결합보다 높은 결과를 나타내었다. 또한 기질의 분자량 크기에 따른 절단율의 차이가 없었으므로 레진 공극 내부로의 확산도 차이에 의한 절단반응의 차이는 없는 것으로 나타났고, 기질 종류에 따른 EK의 활성은 작은 기질이 큰 기질보다 높은 활성을 보였다.

  • PDF

Mini-proinsulins with a beta-turn motif

  • Chang, Seung-Gu;Kim, Dae-Young;Kim, Young-Sook;Park, Ki-Doo;Shin, Jae-Min;Shin, Hang-Cheol
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1995.10a
    • /
    • pp.41-48
    • /
    • 1995
  • To increase the folding efficiency of proinsulin, we have designed a series of mini-proinsulins having the central C-peptide region replaced with sequences forming reverse turns. These proteins were produced as fusion proteins in E. coli in the form of inclusion bodies. After isolation process of the sulfonated mini-proinsulins, the subsequent refolding experiments indicate that the mini-proinsulins, with non-native penta-peptide sequences inserted between two of the enzyme processing sites, show substantially increased folding yields compared with the proinsulin. The correct disulfide connections were verified by fingerprint analysis using Glu-C endoproteinase. These novel mini-proinsulins could be used for the study of folding mechanism of proinsulin.

  • PDF

Thermal Stability of Phaseolus vulgaris Leucoagglutinin: a Differential Scanning Calorimetry Study

  • Biswas, Shyamasri;Kayastha, Arvind M.
    • BMB Reports
    • /
    • v.35 no.5
    • /
    • pp.472-475
    • /
    • 2002
  • Phaseolus vulgaris phytohemagglutinin L is a homotetrameric-leucoagglutinating seed lectin. Its three-dimensional structure shows similarity with other members of the legume lectin family. The tetrameric form of this lectin is pH dependent. Gel filtration results showed that the protein exists in its dimeric state at pH 2.5 and as a tetramer at pH 7.2. Contrary to earlier reports on legume lectins that possess canonical dimers, thermal denaturation studies show that the refolding of phytohemagglutinin L at neutral pH is irreversible. Differential scanning calorimetry (DSC) was used to study the denaturation of this lectin as a function of pH that ranged from 2.0 to 3.0. The lectin was found to be extremely thermostable with a transition temperature around $82^{\circ}C$ and above $100^{\circ}C$ at pH 2.5 and 7.2, respectively. The ratio of calorimetric to vant Hoff enthalpy could not be calculated because of its irreversible-folding behavior. However, from the DSC data, it was discovered that the protein remains in its compact-folded state, even at pH 2.3, with the onset of denaturation occurring at $60^{\circ}C$.

Design and Expression of Recombinant Antihypertensive Peptide Multimer Gene in Escherichia coli BL21

  • Rao, Shengqi;Su, Yujie;Li, Junhua;Xu, Zhenzhen;Yang, Yanjun
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.12
    • /
    • pp.1620-1627
    • /
    • 2009
  • The design and expression of an antihypertensive peptide multimer (AHPM), a common precursor of 11 kinds of antihypertensive peptides (AHPs) tandemly linked up according to the restriction sites of gastrointestinal proteases, were explored. The DNA fragment encoding the AHPM was chemically synthesized and cloned into expression vector pGEX-3X. After an optimum induction with IPTG, the recombinant AHPM fused with glutathione S-transferase (GST-AHPM) was expressed mostly as inclusion body in Escherichia coli BL21 and reached the maximal production, 35% of total intracellular protein. The inclusion body was washed, dissolved, and purified by cation-exchange chromatography under denaturing conditions, followed by refolding together with size-exclusion chromatography and gradual dialysis. The resulting yield of the soluble GSTAHPM (34 kDa) with a purity of 95% reached 399 mg/l culture. The release of high active fragments from the AHPM was confirmed by the simulated gastrointestinal digestion. The results suggest that the design strategy and production method of the AHPM will be useful to obtain a large quantity of recombinant AHPs at a low cost.

Characterization of a novel methionine sulfoxide reductase A from tomato (Solanum lycopersicum), and its protecting role in Escherichia coli

  • Dai, Changbo;Singh, Naresh Kumar;Park, Myung-Ho
    • BMB Reports
    • /
    • v.44 no.12
    • /
    • pp.805-810
    • /
    • 2011
  • Methionine sulfoxide reductase A (MSRA) is a ubiquitous enzyme that has been demonstrated to reduce the S enantiomer of methionine sulfoxide (MetSO) to methionine (Met) and can protect cells against oxidative damage. In this study, we isolated a novel MSRA (SlMSRA2) from Micro-Tom (Solanum lycopersicum L. cv. Micro-Tom) and characterized it by subcloning the coding sequence into a pET expression system. Purified recombinant protein was assayed by HPLC after expression and refolding. This analysis revealed the absolute specificity for methionine-S-sulfoxide and the enzyme was able to convert both free and protein-bound MetSO to Met in the presence of DTT. In addition, the optimal pH, appropriate temperature, and $K_m$ and $K_{cat}$ values for MSRA2 were observed as 8.5, $25^{\circ}C$, $352{\pm}25\;{\mu}M$, and $0.066{\pm}0.009\;S^{-1}$, respectively. Disk inhibition and growth rate assays indicated that SlMSRA2 may play an essential function in protecting E. coli against oxidative damage.