• Title/Summary/Keyword: protein reaction

Search Result 2,137, Processing Time 0.027 seconds

Effects of Protein Functionality on Myofibril Protein-Saccharide Graft Reaction

  • Kim, Tae-Kyung;Yong, Hae In;Cha, Ji Yoon;Kim, Yun Jeong;Jung, Samooel;Choi, Yun-Sang
    • Food Science of Animal Resources
    • /
    • v.42 no.5
    • /
    • pp.849-860
    • /
    • 2022
  • The myofibril protein (MP) isolate-saccharide graft reactions was prepared using the Maillard reaction with saccharides. The effects of various saccharides on protein functionality and quality of the Maillard reaction were investigated and compared with those of MP. The grafting degree of the MP isolate-saccharide graft reaction was significantly higher in the reducing sugar-treated groups (lactose, glucose, fructose, and palatinose). The browning intensity of the MP isolate-saccharide graft reaction with fructose, sucrose, and erythitol was higher than that observed in the control reaction (p<0.05). MP that reacted with reducing sugars (glucose, fructose, palatinose, and lactose) had fainter bands than MP that reacted with non-reducing sugars (sucrose, erythitol, trehalose, sorbitol, and xylitol). MPs conjugated with glucose exhibited higher protein solubility. The palatinose and lactose treatments were maximum in water binding capacity, though no significant difference in oil binding capacity among the saccharide treatments was observed. The emulsion stability of the MP isolate-saccharide graft reaction with palatinose and erythitol was higher than that of the control reaction. Therefore, reducing sugars have good protein functionality in the MP isolate-saccharides graft reaction.

Zeolite-Mediated Cation Exchange Enhances the Stability of mRNA during Cell-Free Protein Synthesis

  • Kim, You-Eil;Kim, Dong-Myung;Choi, Cha-Yong
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.11 no.3
    • /
    • pp.258-261
    • /
    • 2006
  • The addition of zeolite particles enhances the stability of mRNA molecules in a cell-free protein synthesis system. When $20{\mu}g/{\mu}L$ of zeolite (Y5.4) is added to a reaction mixture of cell-free protein synthesis, a substantial increase in protein synthesis is observed. The stabilizing effect of zeolite is most dearly observed in an in vitro translation reaction directed by purified mRNA, as opposed to a coupled transcription and translation reaction. Upon the addition of zeolite in the in vitro translation reaction, the life span of the mRNA molecules is substantially extended, leading to an 80% increase in protein synthesis. The effect of zeolite upon the mRNA stability appears be strongly related to the cation exchange (potassium to sodium) reaction. Our results demonstrate the possibility of modifying this biological process using heterogeneous, non-biological substances in a cell-free protein synthesis system.

Formation of Cross-Linked Products of The Reaction Center D1 Protein in Photosystem II under Light Stress

  • Uchida, Suguru;Kato, Yoji;Yamamoto, Yasusi
    • Journal of Photoscience
    • /
    • v.9 no.2
    • /
    • pp.382-384
    • /
    • 2002
  • When illuminated with strong visible light, the reaction center Dl protein of photo system II is photodamage and degraded. Reactive oxygen species and endogenous cationic radicals generated by photochemical reactions are the cause of the damage to the Dl protein. Recently we found that the photodamaged Dl protein cross-links with the surrounding polypeptides such as D2 and CP43 in photosystem II. As the cross-linking reaction is dependent on the presence of oxygen, reactive oxygen species are suggested to be involved. Among the reactive oxygen species examined, ? OH was most effective in the formation of the cross-linked products. These results indicate that the cross-linking is mostly due to ? OH generated at photosystem II. The cross-linking site of the Dl protein is not known. As several tyrosine residues exist at the D­E loop of the Dl protein, there is a possibility that di-Tyr is formed between the D­E loop of the Dl protein and surrounding polypeptides during the strong illumination. Therefore, we examined the formation of di-Tyr using the monoclonal antibody against di-Tyr under excess illumination of the photosystem II membranes. The results obtained here suggest that no di-Tyr is formed during the excess illumination of photosystem II.

  • PDF

Synthesis of Nitrogen Doped Protein Based Carbon as Pt Catalysts Supports for Oxygen Reduction Reaction (산화환원반응용 백금 촉매 지지체를 위한 질소 도핑된 단백질계 탄소의 제조)

  • Lee, Young-geun;An, Geon-hyeong;Ahn, Hyo-Jin
    • Korean Journal of Materials Research
    • /
    • v.28 no.3
    • /
    • pp.182-188
    • /
    • 2018
  • Nitrogen (N)-doped protein-based carbon as platinum (Pt) catalyst supports from tofu for oxygen reduction reactions are synthesized using a carbonization and reduction method. We successfully prepare 5 wt% Pt@N-doped protein-based carbon, 10 wt% Pt@N-doped protein-based carbon, and 20 wt% Pt@N-doped protein-based carbon. The morphology and structure of the samples are characterized by field emission scanning electron microscopy and transmission electron micro scopy, and crystllinities and chemical bonding are identified using X-ray diffraction and X-ray photoelectron spectroscopy. The oxygen reduction reaction are measured using a linear sweep voltammogram and cyclic voltammetry. Among the samples, 10 wt% Pt@N-doped protein-based carbon exhibits exellent electrochemical performance with a high onset potential of 0.62 V, a high $E_{1/2}$ of 0.55 V, and a low ${\Delta}E_{1/2}=0.32mV$. Specifically, as compared to the commercial Pt/C, the 10 wt% Pt@N-doped protein-based carbon had a similar oxygen reduction reaction perfomance and improved electrochemical stability.

Preparation of plastein product from soymilk residue protein (두유박 단백질을 이용한 plastein의 합성)

  • Lee, Sang-Joon;Park, Woo-Po;Moon, Tae-Wha;Kim, Ze-Uook
    • Applied Biological Chemistry
    • /
    • v.35 no.6
    • /
    • pp.501-506
    • /
    • 1992
  • Pepsin-catalyzed hydrolysis and plastein reaction were carried out to prepare plastein product from soymilk residue protein. Conditions required for optimal hydrolysis of soymilk residue protein and subsequent plastein production were investigated. The optimum substrate concentration, enzyme-substrate ratio, pH, reaction temperature and incubation time for hydrolysis were 3%, 1/50, 1.7, $45^{\circ}C$ and 24 hours, respectively. Plastein formation from peptic hydrolysate of soymilk residue protein was most effective at substrate concentratin of 40%, pH 4 and $45^{\circ}C$. Reaction time of 18 hours and enzyme-substrate ratio of 1/100 were selected for plastein production. Electrophoresis of the products revealed that protein-like substances of high molecular weight were produced from the plastein reaction.

  • PDF

항바이러스제가 단백질의 구조적 거동에 미치는 영향에 대한 유한요소법 기반 분석

  • Yun, Gi-Seok;Kim, Jae-Hun
    • Proceeding of EDISON Challenge
    • /
    • 2015.03a
    • /
    • pp.212-216
    • /
    • 2015
  • Oseltamivir, also known as Tamifu, is an inhibitor of neuraminidase protein which plays an essential role in proliferation and replication of influenza virus. Binding to the active site of neuraminidase, the oseltamivir prevents the protein from enzyme reaction. Conformational change of the protein(neuraminidase) should be accompanied by the enzyme reaction, but the drug inhibits the protein to deform. In this study, we examine the influence of oseltamivir on protein's conformational change in the structural and mechanical point of view. Finite element analysis of the protein can be an useful approach to investigate the influence of oseltamivir on the deformation of a protein. We suggest the finite element based protein model, and then perform the linear static analysis with the displacement loading condition based on the first two largest motion which can be obtained from the normal mode analysis. The results show that it takes more energy to change shape of the protein with an oseltamivir attached than the protein without an oseltamivir.

  • PDF

Photo-induced inter-protein interaction changes in the time domain; a blue light sensor protein PixD

  • Terazima, Masahide
    • Rapid Communication in Photoscience
    • /
    • v.4 no.1
    • /
    • pp.1-8
    • /
    • 2015
  • For understanding molecular mechanisms of photochemical reactions, in particular reactions of proteins with biological functions, it is important to elucidate both the initial reactions from the photoexcited states and the series of subsequent chemical reactions, e.g., conformation, intermolecular interactions (hydrogen bonding, hydrophobic interactions), and inter-protein interactions (oligomer formation, dissociation reactions). Although time-resolved detection of such dynamics is essential, these dynamics have been very difficult to track by traditional spectroscopic techniques. Here, relatively new approaches for probing the dynamics of protein photochemical reactions using time-resolved transient grating (TG) are reviewed. By using this method, a variety of spectrally silent dynamics can be detected and such data provide a valuable description about the reaction scheme. Herein, a blue light sensor protein TePixD is the exemplar. The initial photochemistry for TePixD occurs around the chromophore and is detected readily by light absorption, but subsequent reactions are spectrally silent. The TG experiments revealed conformational changes and changes in inter-protein interactions, which are essential for TePixD function. The TG experiments also showed the importance of fluctuations of the intermediates as the driving force of the reaction. This technique is complementary to optical absorption detection methods. The TG signal contains a variety of unique information, which is difficult to obtain by other methods. The advantages and methods for signal analyses are described in detail in this review.

Facile radiolabeling of antibody-mimetic protein with In-111 via an inverse-electron-demand Diels-Alder reaction

  • Nam, You Ree;Shim, Ha Eun;Lee, Dong-Eun
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.5 no.2
    • /
    • pp.83-88
    • /
    • 2019
  • In order to understand the in vivo biodistribution of repebody protein (RB), an efficient and simple radiolabeling method for the protein is needed. We demonstrate a detailed protocol for the radiosynthesis of an 111In radiolabeled tetrazine prosthetic group and its application to the efficient radiolabeling of trans-cyclooctene-group conjugated repebody protein using inverse-electron-demand Diels-Alder reaction. First, 1,2,4,5-tetrazine (Tz) conjugated with a DOTA chelator, was used for preparing the radiolabeled DOTA complex with 111In. Second, the trans-cyclooctene (TCO) functionalized repebody protein was synthesized which allows for the preparation of radiolabeled proteins by copper-free click chemistry. Following incubation with the 111In-radiolabeled DOTA complex (111In-Tz), the TCO-functionalized RB (TCO-RB) was radiolabeled successfully with 111In, with a high radiochemical yield (69.5%) and radiochemical purity (>99%). The radiolabeling of repebody protein by copper-free click chemistry was accomplished within 20 min, with great efficiency in aqueous conditions. These results clearly indicate that the present radiolabeling method will be useful for the efficient and convenient radiolabeling of trans-cyclooctene-group containing biomolecules.

Preparation of Blood Glue from Porcine Plasma Protein and Cross-linking Reaction of Plasma Protein with Formaldehyde

  • Cho, Yongsik;Lee, Hwahyoung;Song, Kyung Bin
    • Journal of Applied Biological Chemistry
    • /
    • v.42 no.2
    • /
    • pp.81-84
    • /
    • 1999
  • Blood glue was prepared to reutilize porcine blood. Plasma proteins after lyophilization were treated by addition of wood flour, sodium hydroxide, sodium silicate, and hydrated lime to make blood glue with a suitable adhesivity. Characteristics of the prepared blood glue was monitored by measuring the viscosity with time, and the relationship between degree of hydrolysis of plasma proteins by addition of various amounts of sodium hydroxide and adhesivity was studied. To prevent the emission of formaldehyde during manufacturing of plywood by blood glue, the cross-linking reaction of plasma protein with formaldehyde was also examined. Fourier transform infrared, circular dichroism, and fluorescence spectroscopy study showed that blood plasma proteins react with formaldehyde, resulting in removal of formaldehyde by cross-linking reaction.

  • PDF

Changes in Physicochemical Properties of Soybean Protein due to Acetylation during Incubation with Glucose

  • Kim, Myung-Hee;Kim, Jin-Hee;Kim, Kang-Sung
    • Journal of Environmental Health Sciences
    • /
    • v.30 no.4
    • /
    • pp.308-313
    • /
    • 2004
  • Native and acetylated soybean protein with acetylation percentage of $25\%$ were incubated with glucose to induce Maillard reaction. Acetylation of ${\varepsilon}$-amino group of lysine residues changed the conformation of soybean protein. The direct uv spectrum of native and acetylated soybean protein showed conformational changes with accessibility of tyrosine and tryptophan residues increased. Acetylation suppressed Maillard reaction between soybean protein and glucose. Acetylated soybean protein showed improved water sorption, fat binding, foam formation, and emulsion activity of the protein, but depressed brown pigment development and trypsin digestion. Thus aceylation prevented deterioration of certain functional characteristics that occurred during storage, besides causing functional characteristics to be improved on its own.