• Title/Summary/Keyword: protein metabolism

Search Result 1,674, Processing Time 0.026 seconds

Effect of Dietary Protein Level on Renal Function : Lipid and Eicosanoids Metabolism in Uninephrectomized Aging Model in Rats (식이 단백질 수준이 한쪽 신장을 절제한 흰쥐에서 혈청 지질 및 Eicosanoid 대사에 미치는 영향)

  • 이현숙
    • Journal of Nutrition and Health
    • /
    • v.29 no.10
    • /
    • pp.1072-1079
    • /
    • 1996
  • This study was performed to elucidate the mechanism of dietary protein level on renal function through lipid and eicosanoids metabolism. Male rats of 337.8$\pm$5.7g body weight were undergone unilateral nephrectomy or sham-operation. The rats were divided into high protein(40% casein), normal protein(15% casein) and low protein(8% casein) diet groups and fed experimental diets ad libitum for 24 weeks. The results are summarized as follows. Serum total lipid, cholesterol and HDL-cholesterol of rats in 15% and 40% casein groups were higher than those of 8% casein group. But serum triglyceride was affected neither by uninephrectomy nor by dietary protein level. Serum thromboxane(TX) B2 and 6-keto prostaglandin F1$\alpha$ increased with increasing dietary protein level. Serum prostaglandin(PG) E2 was not affected by uninephrectomy nor by dietary protein level. Urinary PGE2 and TXB2 excretion tended to be lower in uninephrectomized groups. Renal tissue concentration of TXB2 was lower in uninephrectomized groups and in high protein group. These results suggest the possibility that the effects of dietary protein level on renal function could be due to changes in lipid and eicosanoids metabolism.

  • PDF

The Effects of Dietary Protein and Caffeine Consumption Levels on Calcium Phosphorus, Sodium and Potassium Metabolism in the Rats of Different Ages (단백질과 카페인의 섭취수준이 나이가 다른 흰쥐의 칼슘, 인 , 나트륨 및 칼륨 대사에 미치는 영향)

  • 여정숙;승정자
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.23 no.1
    • /
    • pp.13-22
    • /
    • 1994
  • This study was designed to investigate the effects of dietary protein and caffeine consumption levels on Ca, P, Na and K metabolism. One hundred twenty rats were divided into twelve groups according to age, protein level and caffeine consumption such as group(120-130g young rat, 250-300g adult rat) , dietary protein group (20% normal protein , 85 low protein) , caffeine consumption group(0, 3.5mg, 7.0mg). Low protein diet containing high caffeine levels caffeine levels increased calcium, phosphorus, sodium and potassium contents of urine and fecal in rats. Young rat has higher level of calcium, phosphorus , sodium and potassium than adult rat. In the serum, calcium contents were not affected by age, dietary protein levels and caffeine consumption . However, phosphorus, sodium and potassium contents of serum in adult rat were higher than young rat. In the liver, potassium decreased with decreasing dietary protein levels. In the kidney, calcium , phosphorus and potassium contents were not different by age group, dietary protein levels and caffeine consumption , but sodium content was significantly reduced in the adult rat.

  • PDF

Nitrogen metabolism and mammary gland amino acid utilization in lactating dairy cows with different residual feed intake

  • Xie, Yunyi;Miao, Chao;Lu, Yi;Sun, Huizeng;Liu, Jianxin
    • Animal Bioscience
    • /
    • v.34 no.10
    • /
    • pp.1600-1606
    • /
    • 2021
  • Objective: This study was conducted to enhance our understanding of nitrogen (N) metabolism and mammary amino acid (AA) utilization in lactating cows with divergent phenotypes of residual feed intake (RFI). Methods: Fifty-three multiparous mid-lactation Holstein dairy cows were selected for RFI measurements over a 50-d experimental period. The 26 cows with the most extreme RFI values were classified into the high RFI (n = 13) and low RFI (n = 13) groups, respectively, for analysis of N metabolism and AA utilization. Results: Compared with the high RFI cows, the low RFI animals had lower dry matter intake (p<0.01) with no difference observed in milk yield between the two groups (p>0.10). However, higher ratios of milk yield to dry matter intake (p<0.01) were found in the low RFI cows than in the high RFI cows. The low RFI cows had significant greater ratios of milk protein to metabolizable protein (p = 0.02) and milk protein to crude protein intake than the high RFI cows (p = 0.01). The arterial concentration and mammary uptake of essential AA (p<0.10), branched-chain AA (p<0.10), and total AA (p<0.10) tended to be lower in the low RFI cows. Additionally, the low RFI cows tended to have a lower ratio of AA uptake to milk output for essential AA (p = 0.08), branched-chain AA (p = 0.07) and total AA (p = 0.09) than the high RFI cows. Conclusion: In summary, both utilization of metabolizable protein for milk protein and mammary AA utilization are more efficient in cows with lower RFI than in the high RFI cows. Our results provide new insight into the protein metabolic processes (related to N and AA) involved in feed efficiency.

The Effect of Dietary Protein Levels on Nitrogen Metabolism in Young Korean Women (한국여성의 단백질 섭취수준이 질소대사에 미치는 영향)

  • 구재옥
    • Journal of Nutrition and Health
    • /
    • v.21 no.1
    • /
    • pp.47-60
    • /
    • 1988
  • This study was performed to investigate the effect of dietary levels on protein metabolism in eight healthy Korean adult females. The 20-day metabolic study consisted of 2 day adaptation period and three 6-day experimental. Three experimental diets were low protein (LP : protein 44g), high protein(HP : protein 85g) and high animal protein (HAP : protein-84g). The apparent absorption and balance on nitrogen were significantly higher in high protein than in low protein diet. Nitrogen, absorption rate was about 75% for low protein and about 85% for high protein intake. The mean values of nitrogen balance were -1.28% for low protein and 0.78% for high protein diet. All the subjects were in negative nitrogen balance at the low protein intake while they were in positive nitrogen balance at the high protein intake. The mean daily urinary nitrogen excretion increased with increased level of protein intake. Urea nitrogen was the largest part of the urinary nitrogen. The ratio of urea nitrogen to total urinary nitrogen increased significantly for 79 to 85% as protein intake was doubled.

  • PDF

Effects of Early Weaning and Protein Intake on Organ Growth, Metabolism and Physiological Functional in Rats (조기 이유와 단백질의 양적.질적 섭취가 흰쥐의 기관성장 , 질소대사 및 생리기능에 미치는 영향)

  • 이연숙
    • Journal of Nutrition and Health
    • /
    • v.31 no.3
    • /
    • pp.243-252
    • /
    • 1998
  • This study was conducted to investigated the short-term effects of early weaning and protein intake on organ and cell growth, nitrogen metabolism and physiological functions of rats. Five groups of early weaned rats separated from the dam on the 15th day postpartum were each given one five diets consisting of either one of the three levels of casein-low(8%), -normal (16%), and -high(32%), or a normal level (16%) of isolated soy protein(ISP) or egg yolk protein, for 7 days. The normal weaned rats were fed maternal breast milk for three weeks from birth. On the 22nd day postpartum , all the rats were sacrificed . The weight gain of the early weaned rats, especially the ones fed high protein, was observed to be significantly lower than that of the normal weaned rats. By the 15th day, of early weaning and especially in the ISP-fed rats, the total DNA contents of liver and kidney, which may be said to represent an index of cell numbers, significantly decreased, but their fresh and dry weight and protein/DNA ratio, allegedly representing an index of cell size, significantly increased , not affecting the cell number and cell size of brain. There were no differences in total serum protein and albumin concentrations between early and normal weaned rats. In the early weaned rats observed , the serum urea N and $\alpha$-amino N concentrations significantly increased in high protein-fed rats, and decreased in low protein-fed rats. Another observation was that no significant difference was noticed as regards to serum GOT activity, total bilirubin, uric acid, and creatinine concentration, which may represent indices of liver and kidney functions, among rat groups, GPT activity was an exception . These results suggest that premature weaning and the quality and quantity of dietary protein significantly affect organ and cell growth and nitrogen metabolism but does not seriously affect physiological functions in the neonatal development of rats.

  • PDF

Changes in ruminal fermentation and blood metabolism in steers fed low protein TMR with protein fraction-enriched feeds

  • Choi, Chang Weon
    • Korean Journal of Agricultural Science
    • /
    • v.43 no.3
    • /
    • pp.379-386
    • /
    • 2016
  • Four ruminally cannulated Holstein steers (BW $482.9{\pm}8.10kg$), fed low protein TMR (CP 11.7%) as a basal diet, were used to investigate changes in rumen fermentation and blood metabolism according to protein fraction, cornell net carbohydrates and protein system (CNCPS), and enriched feeds. The steers, arranged in a $4{\times}4$ Latin square design, consumed TMR only (control), TMR supplemented with rapeseed meal (AB1), soybean meal (B2), and perilla meal (B3C), respectively. The protein feeds were substituted for 23.0% of CP in TMR. Ruminal pH, ammonia-N, and volatile fatty acids (VFA) in rumen digesta, sampled through ruminal cannula at 1 h-interval after the morning feeding, were analyzed. For plasma metabolites analysis, blood was sampled via the jugular vein after the rumen digesta sampling. Different N fraction-enriched protein feeds did not affect (p > 0.05) mean ruminal pH except AB1 being numerically lower 1 - 3 h post-feeding than the other groups. Mean ammonia-N was statistically (p < 0.05) higher for AB1 than for the other groups, but VFA did not differ among the groups. Blood urea nitrogen was statistically (p < 0.05) higher for B2 than for the other groups, which was rather unclear due to relatively low ruminal ammonia-N. This indicates that additional studies on relationships between dietary N fractions and ruminant metabolism according to different levels of CP in a basal diet should be required.

Effects of Dietary Protein Levels on Protein Metabolism in Ethanol-Administered Rats (에탄올을 투여한 흰쥐에서 단백질 섭취수준이 단백질 대사에 미치는 영향)

  • 고진복;정복미
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.21 no.4
    • /
    • pp.327-333
    • /
    • 1992
  • This study was performed to investigate effects of ethanol and dietary protein levels on protein metabolism in 15-week-old male rats given a normal diet. Rats were divided into 8 groups : control group (165 protein, 16 PC) and 8%(8PE), 16%(16PE) and 24% protein groups (24PE) to which was given 5% ethanol mixed into their drinking water after 4 weeks and 10 weeks. Body weight gain, organ weight, serum glucose concentration and liver protein concentrations were not affected by either ethanol or dietary protein levels. Serum total protein concentrations after 10 weeks were significantly increased in the 16 PE and 24PE groups compared with that of control group. Serum albumin concentrations after 10 weeks were significantly increased in all the ethanol-administered groups than that of control group. Fecal and urinary nitrogen metabolism wee not affected by ethanol.

  • PDF

Glycogen Metabolism in Vibrio vulnificus Affected by malP and malQ

  • Han, Ah-Reum;Lee, Yeon-Ju;Wang, Tianshi;Kim, Jung-Wan
    • Microbiology and Biotechnology Letters
    • /
    • v.46 no.1
    • /
    • pp.29-39
    • /
    • 2018
  • Vibrio vulnificus needs various responsive mechanisms to survive and transmit successfully in alternative niches of human and marine environments, and to ensure the acquisition of steady energy supply to facilitate such unique life style. The bacterium had genetic constitution very different from that of Escherichia coli regarding metabolism of glycogen, a major energy reserve. V. vulnificus accumulated more glycogen than other bacteria and at various levels according to culture medium and carbon source supplied in excess. Glycogen was accumulated to the highest level in Luria-Bertani (3.08 mg/mg protein) and heart infusion (4.30 mg/mg protein) complex media supplemented with 1% (w/v) maltodextrin at 3 h into the stationary phase. Regarding effect of carbon source, more glycogen was accumulated when maltodextrin (2.34 mg/mg protein) was added than when glucose or maltose (0.78.1-14 mg/mg protein) was added as an excessive carbon source to M9 minimal medium, suggesting that maltodextrin metabolism might affect glycogen metabolism very closely. These results were supported by the analysis using the malP (encoding a maltodextrin phosphorylase) and malQ (encoding a 4-${\alpha}$-glucanotransferase) mutants, which accumulated much less glycogen than wild type when either glucose or maltodextrin was supplied as an excessive carbon source, but at different levels (3.1-80.3% of wild type glycogen). Therefore, multiple pathways for glycogen metabolism were likely to function in V. vulnificus and that responding to maltodextrin might be more efficient in synthesizing glycogen. All of the glycogen samples from 3 V. vulnificus strains under various conditions showed a narrow side chain length distribution with short chains (G4-G6) as major ones. Not only the comparatively large accumulation volume but also the structure of glycogen in V. vulnificus, compared to other bacteria, may explain durability of the bacterium in external environment.

Gromwell (Lithospermum erythrorhizon) Attenuates High-Fat-Induced Skeletal Muscle Wasting by Increasing Protein Synthesis and Mitochondrial Biogenesis

  • Ji-Sun Kim;Hyunjung Lee;Ahyoung Yoo;Hang Yeon Jeong;Chang Hwa Jung;Jiyun Ahn;Tae-Youl Ha
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.3
    • /
    • pp.495-505
    • /
    • 2024
  • Gromwell (Lithospermum erythrorhizon, LE) can mitigate obesity-induced skeletal muscle atrophy in C2C12 myotubes and high-fat diet (HFD)-induced obese mice. The purpose of this study was to investigate the anti-skeletal muscle atrophy effects of LE and the underlying molecular mechanism. C2C12 myotubes were pretreated with LE or shikonin, and active component of LE, for 24 h and then treated with 500 μM palmitic acid (PA) for an additional 24 h. Additionally, mice were fed a HFD for 8 weeks to induced obesity, and then fed either the same diet or a version containing 0.25% LE for 10 weeks. LE attenuated PA-induced myotubes atrophy in differentiated C2C12 myotubes. The supplementation of LE to obese mice significantly increased skeletal muscle weight, lean body mass, muscle strength, and exercise performance compared with those in the HFD group. LE supplementation not only suppressed obesity-induced skeletal muscle lipid accumulation, but also downregulated TNF-α and atrophic genes. LE increased protein synthesis in the skeletal muscle via the mTOR pathway. We observed LE induced increase of mitochondrial biogenesis and upregulation of oxidative phosphorylation related genes in the skeletal muscles. Furthermore, LE increased the expression of peroxisome proliferator-activated receptor-gamma coactivator-1 alpha and the phosphorylation of adenosine monophosphate-activated protein kinase. Collectively, LE may be useful in ameliorating the detrimental effects of obesity-induced skeletal muscle atrophy through the increase of protein synthesis and mitochondrial biogenesis of skeletal muscle.

A Theoretical Modeling for Suggesting Unique Mechanism of Adolescent Calcium Metabolism

  • Lee, Wang-Hee;Cho, Byoung-Kwan;Okos, Martin R.
    • Journal of Biosystems Engineering
    • /
    • v.38 no.2
    • /
    • pp.129-137
    • /
    • 2013
  • Purpose: Modeling has been used for elucidating the mechanism of complex biosystems. In spite of importance and uniqueness of adolescent calcium (Ca) metabolism characterized by a threshold Ca intake, its regulatory mechanism has not been covered and even not proposed. Hence, this study aims at model-based proposing potential mechanisms regulating adolescent Ca metabolism. Methods: Two different hypothetic mechanisms were proposed. The main mechanism is conceived based on Ca-protein binding which induces renal Ca filtration, while additional mechanism assumed that active renal Ca re-absorption regulated Ca metabolism in adolescents. Mathematical models were developed to represent the proposed mechanism and simulated them whether they could produce adolescent Ca profiles in serum and urine. Results: Simulation showed that both mechanisms resulted in the unique behavior of Ca metabolism in adolescents. Based on the simulation insulin-like growth factor-1 (IGF-1) is suggested as a potential regulator because it is related to both growth, a remarkable characteristic of adolescence, and Ca metabolism including absorption and bone accretion. Then, descriptive modeling is employed to conceptualize the hypothesized mechanisms governing adolescent Ca metabolism. Conclusions: This study demonstrated that modeling is a powerful tool for elucidating an unknown mechanism by simulating potential regulatory mechanisms in adolescent Ca metabolism. It is expected that various analytic applications would be plausible in the study of biosystems, particularly with combination of experimental and modeling approaches.