• 제목/요약/키워드: protein function analysis

검색결과 721건 처리시간 0.027초

Gel Image Matching Using Hopfield Neural Network (홉필드 신경망을 이용한 젤 영상 정합)

  • Ankhbayar Yukhuu;Hwang Suk-Hyung;Hwang Young-Sup
    • The KIPS Transactions:PartB
    • /
    • 제13B권3호
    • /
    • pp.323-328
    • /
    • 2006
  • Proteins in a cell appear as spots in a two dimensional gel image which is used in protein analysis. The spots from the same protein are in near position when comparing two gel images. Finding out the different proteins between a normal tissue and a cancer one is important information in drug development. Automatic matching of gel images is difficult because they are made from biological experimental processes. This matching problem is known to be NP-hard. Neural networks are usually used to solve such NP-hard problems. Hopfield neural network is selected since it is appropriate to solve the gel matching. An energy function with location and distance parameters is defined. The two spots which make the energy function minimum are matching spots and they came from the same protein. The energy function is designed to reflect the topology of spots by examining not only the given spot but also neighborhood spots.

Proteome analysis of chickens fed with tissue culture medium waste after harvest of Korean wild ginseng (산삼 배양액을 급여한 육계에서 근육의 프로테옴 분석)

  • Seol, Jae-Won;Hwang, In Ho;Chae, Joon-Seok;Kang, Hyung-Sub;Ryu, Kyeong-Seon;Kang, Chun-Seong;Park, Sang-Youel
    • Korean Journal of Veterinary Research
    • /
    • 제45권2호
    • /
    • pp.155-161
    • /
    • 2005
  • Proteomics is a useful approach to know protein expression, post-translational modification and protein function. We investigated the protein expression pattern and identity in chickens fed with the tissue culture medium waste after harvest of Korean wild ginseng (TCM-KWG) (Panax ginseng). Two groups (n=60/group) of day old broiler chickens were administered with 0 (control) and 0.8% (treatment) TCM-KWG through drinking water. After 5 weeks, we examined the protein expression pattern of fibularis longus and superficial pectoral muscle by Two-dimensional electrophoresis analysis. Interestingly, TCM-KWG treatment significantly increased five spot's density, and markedly reduced five spot's density in the muscles. We identified 10 proteins (desmin, myosin light chain 1, heat shock 25 kDa protein, collapsin response mediator protein-2A, alpha enolase, vimentin, actin alpha 1, my023 protein, pyruvate kinase and troponin T) by the matrix-assisted laser desorption ionization time of flight (MALDI-TOF).

Post-translational Modifications and Their Biological Functions: Proteomic Analysis and Systematic Approaches

  • Seo, Ja-Won;Lee, Kong-Joo
    • BMB Reports
    • /
    • 제37권1호
    • /
    • pp.35-44
    • /
    • 2004
  • Recently produced information on post-translational modifications makes it possible to interpret their biological regulation with new insights. Various protein modifications finely tune the cellular functions of each protein. Understanding the relationship between post-translational modifications and functional changes ("post-translatomics") is another enormous project, not unlike the human genome project. Proteomics, combined with separation technology and mass spectrometry, makes it possible to dissect and characterize the individual parts of post-translational modifications and provide a systemic analysis. Systemic analysis of post-translational modifications in various signaling pathways has been applied to illustrate the kinetics of modifications. Availability will advance new technologies that improve sensitivity and peptide coverage. The progress of "post-translatomics", novel analytical technologies that are rapidly emerging, offer a great potential for determining the details of the modification sites.

Comparison and Analyzing System for Protein Tertiary Structure Database expands LOCK (LOCK을 확장한 3차원 단백질 구조비교 및 분석시스템의 설계 및 구현)

  • Jung Kwang Su;Han Yu;Park Sung Hee;Ryu Keun Ho
    • The KIPS Transactions:PartD
    • /
    • 제12D권2호
    • /
    • pp.247-258
    • /
    • 2005
  • Protein structure is highly related to its function and comparing protein structure is very important to identify structural motif, family and their function. In this paper, we construct an integrated database system which has all the protein structure data and their literature. The structure queries from the web interface are compared with the target structures in database, and the results are shown to the user for future analysis. To constructs this system, we analyze the Flat-File of Protein Data Bank. Then we select the necessary structure data and store as a new formatted data. The literature data related to these structures are stored in a relational database to query the my kinds of data easily In our structure comparison system, the structure of matched pattern and RMSD valure are calculated, then they are showed to the user with their relational documentation data. This system provides the more quick comparison and nice analyzing environment.

Centromere protein U enhances the progression of bladder cancer by promoting mitochondrial ribosomal protein s28 expression

  • Liu, Bei-Bei;Ma, Tao;Sun, Wei;Gao, Wu-Yue;Liu, Jian-Min;Li, Li-Qiang;Li, Wen-Yong;Wang, Sheng;Guo, Yuan-Yuan
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제25권2호
    • /
    • pp.119-129
    • /
    • 2021
  • Bladder cancer is one of the most common types of cancer. Most gene mutations related to bladder cancer are dominantly acquired gene mutations and are not inherited. Previous comparative transcriptome analysis of urinary bladder cancer and control samples has revealed a set of genes that may play a role in tumor progression. Here we set out to investigate further the expression of two candidate genes, centromere protein U (CENPU) and mitochondrial ribosomal protein s28 (MRPS28) to better understand their role in bladder cancer pathogenesis. Our results confirmed that CENPU is up-regulated in human bladder cancer tissues at mRNA and protein levels. Gain-of-function and loss-of-function studies in T24 human urinary bladder cancer cell line revealed a hierarchical relationship between CENPU and MRPS28 in the regulation of cell viability, migration and invasion activity. CENPU expression was also up-regulated in in vivo nude mice xenograft model of bladder cancer and mice overexpressing CENPU had significantly higher tumor volume. In summary, our findings identify CENPU and MRPS28 in the molecular pathogenesis of bladder cancer and suggest that CENPU enhances the progression of bladder cancer by promoting MRPS28 expression.

Hypothetical protein predicted to be tumor suppressor: a protein functional analysis

  • Kader, Md. Abdul;Ahammed, Akash;Khan, Md. Sharif;Ashik, Sheikh Abdullah Al;Islam, Md. Shariful;Hossain, Mohammad Uzzal
    • Genomics & Informatics
    • /
    • 제20권1호
    • /
    • pp.6.1-6.15
    • /
    • 2022
  • Litorilituus sediminis is a Gram-negative, aerobic, novel bacterium under the family of Colwelliaceae, has a stunning hypothetical protein containing domain called von Hippel-Lindau that has significant tumor suppressor activity. Therefore, this study was designed to elucidate the structure and function of the biologically important hypothetical protein EMK97_00595 (QBG34344.1) using several bioinformatics tools. The functional annotation exposed that the hypothetical protein is an extracellular secretory soluble signal peptide and contains the von Hippel-Lindau (VHL; VHL beta) domain that has a significant role in tumor suppression. This domain is conserved throughout evolution, as its homologs are available in various types of the organism like mammals, insects, and nematode. The gene product of VHL has a critical regulatory activity in the ubiquitous oxygen-sensing pathway. This domain has a significant role in inhibiting cell proliferation, angiogenesis progression, kidney cancer, breast cancer, and colon cancer. At last, the current study depicts that the annotated hypothetical protein is linked with tumor suppressor activity which might be of great interest to future research in the higher organism.

Type 3 muscarinic acetylcholine receptor stimulation is a determinant of endothelial barrier function and adherens junctions integrity: role of protein-tyrosine phosphatase 1B

  • Jiao, Zhou-Yang;Wu, Jing;Liu, Chao;Wen, Bing;Zhao, Wen-Zeng;Du, Xin-Ling
    • BMB Reports
    • /
    • 제47권10호
    • /
    • pp.552-557
    • /
    • 2014
  • The main purpose of this study was to investigate whether type 3 muscarinic acetylcholine receptor (M3R) dysfunction induced vascular hyperpermeability. Transwell system analysis showed that M3R inhibition by selective antagonist 4-diphenylacetoxy-N-methylpiperidine methiodide (4-DAMP) and small interfering RNA both increased endothelial permeability. Using coimmunoprecipitation and Western blot assay, we found that M3R inhibition increased VE-cadherin and ${\beta}$-catenin tyrosine phosphorylation without affecting their expression. Using PTP1B siRNA, we found that PTP1B was required for maintaining VE-cadherin and ${\beta}$-catenin protein dephosphorylation. In addition, 4-DAMP suppressed PTP1B activity by reducing cyclic adenosine monophosphate (cAMP), but not protein kinase $C{\alpha}$ ($PKC{\alpha}$). These data indicate that M3R preserves the endothelial barrier function through a mechanism potentially maintaining PTP1B activity, keeping the adherens junction proteins (AJPs) dephosphorylation.

C-terminally mutated tubby protein accumulates in aggresomes

  • Kim, Sunshin;Sung, Ho Jin;Lee, Ji Won;Kim, Yun Hee;Oh, Yong-Seok;Yoon, Kyong-Ah;Heo, Kyun;Suh, Pann-Ghill
    • BMB Reports
    • /
    • 제50권1호
    • /
    • pp.37-42
    • /
    • 2017
  • The tubby protein (Tub), a putative transcription factor, plays important roles in the maintenance and function of neuronal cells. A splicing defect-causing mutation in the 3'-end of the tubby gene, which is predicted to disrupt the carboxy-terminal region of the Tub protein, causes maturity-onset obesity, blindness, and deafness in mice. Although this pathological Tub mutation leads to a loss of function, the precise mechanism has not yet been investigated. Here, we found that the mutant Tub proteins were mostly localized to puncta found in the perinuclear region and that the C-terminus was important for its solubility. Immunocytochemical analysis revealed that puncta of mutant Tub co-localized with the aggresome. Moreover, whereas wild-type Tub was translocated to the nucleus by extracellular signaling, the mutant forms failed to undergo such translocation. Taken together, our results suggest that the malfunctions of the Tub mutant are caused by its misfolding and subsequent localization to aggresomes.

Physiological Function of NbRanBP1 in Nicotiana benthamiana

  • Cho, Hui-Kyung;Park, Jong-A;Pai, Hyun-Sook
    • Molecules and Cells
    • /
    • 제26권3호
    • /
    • pp.270-277
    • /
    • 2008
  • This study addresses the physiological functions of the Ran-binding protein homolog NbRanBP1 in Nicotiana benthamiana. Virus-induced gene silencing (VIGS) of NbRanBP1 caused stunted growth, leaf yellowing, and abnormal leaf morphology. The NbRanBP1 gene was constitutively expressed in diverse tissues and an NbRanBP1:GFP fusion protein was primarily localized to the nuclear rim and the cytosol. BiFC analysis revealed in vivo interaction between NbRanBP1 and NbRan1 in the nuclear envelope and the cytosol. Depletion of NbRanBP1 or NbRan1 reduced nuclear accumulation of a NbBTF3:GFP marker protein. In the later stages of development, NbRanBP1 VIGS plants showed stress responses such as reduced mitochondrial membrane potential, excessive production of reactive oxygen species, and induction of defense-related genes. The molecular role of RanBP1 in plants is discussed in comparison with RanBP1 function in yeast and mammals.

A Comparative Analysis of Monofunctional Biosynthetic Peptidoglycan Transglycosylase (MBPT) from Pathogenic and Non-pathogenic Bacteria

  • Baker, Andrew T.;Takahashi, Natsumi;Chandra, Sathees B.
    • Genomics & Informatics
    • /
    • 제8권2호
    • /
    • pp.63-69
    • /
    • 2010
  • Monofunctional biosynthetic peptidoglycan transglycosylase (MBPT) catalyzes the formation of the glycan chain in bacterial cell walls from peptidoglycan subunits: N-acetylglucosamine (NAG) and acetylmuramic acid (NAM). Bifunctional glycosyltransferases such as the penicillin binding protein (PBP) have peptidoglycan glycosyltransferase (PGT) on their C terminal end which links together the peptidoglycan subunits while transpeptidase (TP) on the N terminal end cross-links the peptide moieties on the NAM monosaccharide of the peptide subunits to create the bacterial cell wall. The singular function of MBPT resembles the C terminal end of PBP as it too contains and utilizes a similar PGT domain. In this article we analyzed the infectious and non infectious protein sequences of MBPT from 31 different strains of bacteria using a variety of bioinformatic tools. Motif analysis, dot-plot comparison, and phylogenetic analysis identified a number of significant differences between infectious and non-infectious protein sequences. In this paper we have made an attempt to explain, analyze and discuss these differences from an evolutionary perspective. The results of our sequence analysis may open the door for utilizing MBPT as a new target to fight a variety of infectious bacteria.