• 제목/요약/키워드: protein elicitor activity

검색결과 10건 처리시간 0.029초

A Novel Protein Elicitor PeBL2, from Brevibacillus laterosporus A60, Induces Systemic Resistance against Botrytis cinerea in Tobacco Plant

  • Jatoi, Ghulam Hussain;Lihua, Guo;Xiufen, Yang;Gadhi, Muswar Ali;Keerio, Azhar Uddin;Abdulle, Yusuf Ali;Qiu, Dewen
    • The Plant Pathology Journal
    • /
    • 제35권3호
    • /
    • pp.208-218
    • /
    • 2019
  • Here, we reported a novel secreted protein elicitor PeBL2 from Brevibacillus laterosporus A60, which can induce hypersensitive response in tobacco (Nicotiana benthamiana). The ion-exchange chromatography, high-performance liquid chromatography (HPLC) and mass spectrometry were performed for identification of protein elicitor. The 471 bp PeBL2 gene produces a 17.22 kDa protein with 156 amino acids containing an 84-residue signal peptide. Consistent with endogenous protein, the recombinant protein expressed in Escherichia coli induced the typical hypersensitive response (HR) and necrosis in tobacco leaves. Additionally, PeBL2 also triggered early defensive response of generation of reactive oxygen species ($H_2O_2$ and $O_2{^-}$) and systemic resistance against of B. cinerea. Our findings shed new light on a novel strategy for biocontrol using B. laterosporus A60.

Yeast Extract로 처리된 Eschscholtzia californica의 Metabolite와 Protein의 변화 (Profiling of Metabolites and Proteins from Eschscholtzia californica induced by Yeast Extract)

  • 조화영;박정진;윤성용;박종문
    • KSBB Journal
    • /
    • 제20권4호
    • /
    • pp.285-290
    • /
    • 2005
  • Sanguinarine은 천연 항균성 물질로 의약품, 생활용품 그리고 화장품 등 그 이용은 다양하나 가격이 비싸고 수율이 따르지 못하는 점을 식물세포배양을 통하여 해결할 수 있을 것으로 기대된다. Sanguinarine의 생산을 극대화하기 위하여 전통적인 방법인 환경적 요인을 고려한 cell selection방법과 유전적 접근인 protein의 변화를 동시에 관찰하였다. Yeast extract를 elicitor로 이용하였을 경우에 control에서는 관찰 할 수 없었던 sanguinarine에 해당하는 오렌지색의 형광을 볼 수 있었으며, 실제 metabolite의 분석에서도 sanguinarine의 증가를 확인 할 수 있었다. 세포 내부에서는 sanguinarine이 약 8배의 증가를 보였으며 배지에서는 약 5배의 증가를 보였다. Protein 역시 2-D electrophoresis로 확인한 결과 intensity가 $5\%,\;88\%,\;6.4\%$의 증가, 일정, 감소를 보인 spot들이 elicitor 처리 후 세포에서는 $34\%,\;39.4\%\;26.5\%$로 intensity가 증가된 spot들이 더많이 검출되었다. 본 연구에서는 sanguinarine을 yeast extract를 이용해서 생산량을 증가시키고 sanguinarine의 생산과 관련된 protein의 변화에 대해서 알아보고자 하였다. 본 예와 같은 실험 연구방법이 식물이차대사산물 생산성에 관련된 protein군을 규명하는데 초석이 될 수 있을 것으로 기대된다.

황금 배양 세포로부터 Phospholipase $A_2$의 분리 (Purification of Phospholipase $A_2$ from Scutellaria baicalensis Suspension Cells)

  • 마충제;김대경
    • 생약학회지
    • /
    • 제40권1호
    • /
    • pp.13-17
    • /
    • 2009
  • It was previously reported that yeast elicitor transiently increased oleanolic acid and ursolic acid in Scutellaria baicalensis suspension cultures and also doubled phospholipase $A_2$ ($PLA_2$) activity. Thus, $PLA_2$ was purified from the soluble fractions of S. baicalensis suspension cultures and the characters of the purified $PLA_2$ were identified. The $PLA_2$ was purified about 160 times compared with the starting soluble-protein extract from S. baicalensis suspension culture cells. The purified protein showed a molecular mass of about 43 kDa by SDS-PAGE. The purified plant $PLA_2$ had a neutral pH optimum (pH 7.0) and required $Ca^{2+}$ for activity. The $PLA_2$ activity was inhibited by mammalian $PLA_2$ inhibitors such as 5,8,11,14-eicosatetraynoic acid(ETYA) and arachidonyl trifluoromethyl ketone ($AACOCF_3$).

Role of ${\alpha}$-tocopherol in cellular signaling: ${\alpha}$-tocopherol inhibits stress-induced mitogen-activated protein kinase activation

  • Hyun, Tae-Kyung;Kumar, Kundan;Rao, Kudupudi Prabhakara;Sinha, Alok Krishna;Roitsch, Thomas
    • Plant Biotechnology Reports
    • /
    • 제5권1호
    • /
    • pp.19-25
    • /
    • 2011
  • Tocopherols belong to the plant-derived poly phenolic compounds known for antioxidant functions in plants and animals. Activation of mitogen-activated protein kinases (MAPK) is a common reaction of plant cells in defense-related signal transduction pathways. We report a novel non-antioxidant function of ${\alpha}$-tocopherol in higher plants linking the physiological role of tocopherol with stress signalling pathways. Pre-incubation of a low concentration of $50{\mu}M$ ${\alpha}$-tocopherol negatively interferes with MAPK activation in elicitor-treated tobacco BY2 suspension culture cells and wounded tobacco leaves, whereas pre-incubated BY2 cells with ${\alpha}$-tocopherol phosphate did not show the inhibitory effect on stimuli-induced MAPK activation. The decreased MAPK activity was neither due to a direct inhibitory effect of ${\alpha}$-tocopherol nor due to the induction of an inhibitory or inactivating activity directly affecting MAPK activity. The data support that the target of ${\alpha}$-tocopherol negatively regulates an upstream component of the signaling pathways that leads to stress dependent MAPK activation.

벼 세포 현탁배양중 chitooligosaccharides 처리에 의해 유도되는 chitinase (Induction of chitinase in rice cell suspension culture treated with chitooligosaccharides mixture)

  • 박희영;김수일
    • Applied Biological Chemistry
    • /
    • 제36권1호
    • /
    • pp.1-6
    • /
    • 1993
  • Chitooligosaccharides 혼합물을 처리한 벼 세포 현탁배양액과 처리하지 않은 배양액의 단백질 및 효소활성을 비교하여 이 elicitor에 의해 유도되는 chitinase를 확인하였다. Chitooligosaccharide 혼합물 처리로 chitinase 활성은 비처리구에 비하여 3.5배 증가하였으며 증가율이 단백질 증가보다 10배 이상 높아 본 효소가 선택적으로 유도되는 것으로 나타났다. Polyacrylamide gel 전기영동상 나타나는 총 11종의 chitinase중 4종이 유도효소로 판명되었으며 DEAE-cellulose chromatography 결과 3개는 $26{\sim}58\;KD$의 분자량을 가진 acidic chitinase 분획에, 나머지 1개는 basic chitinase 분획에 속한 것으로 나타나서 주로 acidic chitinase가 유도되는 것으로 확인되었다.

  • PDF

The coat protein of Turnip crinkle virus is required a full-length to maintain suppressing activity to RNA silencing but no relation with eliciting resistance by N-terminal region in Arabidopsis.

  • Park, Chang-Won;Feng Qu;Tao Ren;T. Jack Morris
    • 한국식물병리학회:학술대회논문집
    • /
    • 한국식물병리학회 2003년도 정기총회 및 추계학술발표회
    • /
    • pp.76.1-76
    • /
    • 2003
  • The coat protein (CP) of Turnip crinkle virus (TCV) is organized into 3 distinct domains, R domain (RNA-binding) connected by an arm, 5 domain and P domain. We have previously shown that the CP of TCV strongly suppresses RNA silencing, and have mapped N-terminal R domain of which is also the elicitor of resistance response in the Arabidopsis ecotype Di-17 carrying the HRT resistance gene. In order to map the region in the TCV CP that is responsible for silencing suppression, a series of CP mutants were constructed, transformed into Agrobacterium, coinfiltrated either with HC-Pro (the helper component proteinase of tobacco etch potyvirus) known as a suppressor of PTGS or GFP constructs into leaves of Nicotiana benthmiana expressing GFP transgenically. In the presence of HC-Pro, all CP mutants were well protected, accumulating mutant CP mRNAs and their proteins even 5 days post-infiltration (DPI). In the presence of GFP, some mutant constructs which showed the accumulation of CP mutants and GFP mRNAs at early stage but eventually degraded at 5 DPI. Only a mutant which carrying 4 amino acid deletion of R domain was tolerable to maintain suppressing activity, suggesting that the suppressing activity is not directly related with the eliciting activity. A transient assay also revealed that the mutants synthesized their proteins, suggesting that a full length of CP sequences and its intact structure are required to stabilize CP, which suppresses the RNA silencing.

  • PDF

콩으로부터 상처 유도 beta-amyrin synthase 유전자의 동정 및 발현분석 (Molecular Cloning and Characterization of Wound-inducible Beta-amyrin Synthase from Soybean)

  • 박성환;이재헌
    • Journal of Plant Biotechnology
    • /
    • 제29권2호
    • /
    • pp.79-84
    • /
    • 2002
  • Suppression subtractive hybridization (SSH)를 통해 상처에 의해 발현이 유도되는 cDNA들을 분리하였고, 그 중 하나인 gmwi33은 $\beta$-amyrin synthase 유전자들과 높은 유사성을 보였다. gmwi33의 전장 cDNA인 GmAMS1은 2416 bp 길이에 739개 아미노산으로 구성된 긴 open reading frame(ORF)를 포함하고 있었다. GmAMS1 단백질은 감초의 $\beta$-amyrin synthase인 GgbAS와 89%, 완두의 OSCPSY와 86%의 유사성을 보였다. 암조건 하에 5일간 기른 콩나물에서, GmAMS1는 빛을 쪼여주었을 때 가장 강하게 발현되었고 methyl jasmonate 처리와 저온처리 시에도 발현이 유도된 반면, UV-B나 elicitor를 처리하였을 때는 발현이 유도되지 않았다. 이러한 GmAMS1의 발현양상은 사포닌의 활성산소 제거기능과 밀접한 연관이 있을 것으로 추측된다.

The Arabidopsis AtLEC Gene Encoding a Lectin-like Protein Is Up-Regulated by Multiple Stimuli Including Developmental Signal, Wounding, Jasmonate, Ethylene, and Chitin Elicitor

  • Lyou, Seoung Hyun;Park, Hyon Jin;Jung, Choonkyun;Sohn, Hwang Bae;Lee, Garam;Kim, Chung Ho;Kim, Minkyun;Choi, Yang Do;Cheong, Jong-Joo
    • Molecules and Cells
    • /
    • 제27권1호
    • /
    • pp.75-81
    • /
    • 2009
  • The Arabidopsis gene AtLEC (At3g15356) gene encodes a putative 30-kDa protein with a legume lectin-like domain. Likely to classic legume lectin family of genes, AtLEC is expressed in rosette leaves, primary inflorescences, and roots, as observed in Northern blot analysis. The accumulation of AtLEC transcript is induced very rapidly, within 30 min, by chitin, a fungal wall-derived oligosaccharide elictor of the plant defense response. Transgenic Arabidopsis carrying an AtLEC promoter-driven ${\beta}$-glucuronidase (GUS) construct exhibited GUS activity in the leaf veins, secondary inflorescences, carpel heads, and silique receptacles, in which no expression could be seen in Northern blot analysis. This observation suggests that AtLEC expression is induced transiently and locally during developmental processes in the absence of an external signal such as chitin. In addition, mechanically wounded sites showed strong GUS activity, indicating that the AtLEC promoter responds to jasmonate. Indeed, methyl jasmonate and ethylene exposure induced AtLEC expression within 3-6 h. Thus, the gene appears to play a role in the jasmonate-/ethylene-responsive, in addition to the chitin-elicited, defense responses. However, chitin-induced AtLEC expression was also observed in jasmonate-insensitive (coi1) and ethylene-insensitive (etr1-1) Arabidopsis mutants. Thus, it appears that chitin promotes AtLEC expression via a jasmonate- and/or ethylene-independent pathway.

Antioxidant Enzyme Responses against Abiotic and Biotic Stresses in Rehmannia glutinosa L. and Glycine max L.

  • Moon, Yu-Ran;Lim, Jeong-Hyun;Park, Myoung-Ryoul;Yu, Chang-Yeon;Chung, Ill-Min;Yang, Deok-Chun;Yun, Song-Joong
    • 한국약용작물학회지
    • /
    • 제12권5호
    • /
    • pp.360-365
    • /
    • 2004
  • Rehmannia glutinosa shows a high level of resistance to the non-selective herbicide paraquat. To characterize the antioxidant enzyme system of R. glutinosa, we comparatively examined the responses of antioxidant enzymes to UV, wounding and a general elicitor yeast extract in R. glutinosa and soybean. The levels of enzyme activities of the two plant species were drastically different between those per fresh weight (general activity) and per protein (specific activity) bases. The general activities of superoxide dismutase (SOD), peroxidase (POX), catalase (CAT), and glutathione reductase (GR) were lower, but that of ascorbate peroxidase (APX) was higher in R. glutinosa than in soybean. The specific activities of the enzymes, however, were about two- to seven-fold higher in R. glutinosa than in soybean, except that of CAT, which was about 12-fold higher in soybean. The general and specific enzyme activities of R. glutinosa relative to those of soybean showed a consistent increase in responses to the stresses only in SOD. The specific activities of SOD and APX were higher in R. glutinosa in all stress treatments. The results might suggest a relatively higher contribution of SOD and APX to the stress tolerance.

The Danger-Associated Peptide PEP1 Directs Cellular Reprogramming in the Arabidopsis Root Vascular System

  • Dhar, Souvik;Kim, Hyoujin;Segonzac, Cecile;Lee, Ji-Young
    • Molecules and Cells
    • /
    • 제44권11호
    • /
    • pp.830-842
    • /
    • 2021
  • When perceiving microbe-associated molecular patterns (MAMPs) or plant-derived damage-associated molecular patterns (DAMPs), plants alter their root growth and development by displaying a reduction in the root length and the formation of root hairs and lateral roots. The exogenous application of a MAMP peptide, flg22, was shown to affect root growth by suppressing meristem activity. In addition to MAMPs, the DAMP peptide PEP1 suppresses root growth while also promoting root hair formation. However, the question of whether and how these elicitor peptides affect the development of the vascular system in the root has not been explored. The cellular receptors of PEP1, PEPR1 and PEPR2 are highly expressed in the root vascular system, while the receptors of flg22 (FLS2) and elf18 (EFR) are not. Consistent with the expression patterns of PEP1 receptors, we found that exogenously applied PEP1 has a strong impact on the division of stele cells, leading to a reduction of these cells. We also observed the alteration in the number and organization of cells that differentiate into xylem vessels. These PEP1-mediated developmental changes appear to be linked to the blockage of symplastic connections triggered by PEP1. PEP1 dramatically disrupts the symplastic movement of free green fluorescence protein (GFP) from phloem sieve elements to neighboring cells in the root meristem, leading to the deposition of a high level of callose between cells. Taken together, our first survey of PEP1-mediated vascular tissue development provides new insights into the PEP1 function as a regulator of cellular reprogramming in the Arabidopsis root vascular system.