• Title/Summary/Keyword: protein damage

Search Result 1,186, Processing Time 0.038 seconds

Dihydropyrimidinase related protein-2 expression in focal ischemic rat brain and hypoxia-induced PC 12 cell

  • Chung, Myung-Ah;Kim, Hwa-Jung
    • Proceedings of the PSK Conference
    • /
    • 2003.04a
    • /
    • pp.199.1-199.1
    • /
    • 2003
  • Ischemia-induced changes in protein expression may provide important insights into the mechanisms of cellular damage and their potential recovery. In the present study, to investigate protein patterns changed in ischemic condition, the cortical and striatal tissue samples from the permanent and transient ischemic rat brain obtained by middle cerebral occlusion were analysed by proteomic approchese using 20-PAGE and MALOI-MS. (omitted)

  • PDF

DNA Damage-inducible Phosphorylation of p53 at Ser20 is Required for p53 Stabilization

  • Yang, Dong-Hwa;Rhee, Byung-Kirl;Yim, Tae-Hee;Lee, Hye-Jin;Kim, Jungho
    • Animal cells and systems
    • /
    • v.6 no.3
    • /
    • pp.263-269
    • /
    • 2002
  • The p53 tumor suppressor gene is among the most frequently mutated and studied genes in human cancer, but the mechanisms by which it sur presses tumor formation remain unclear. DNA damage regulates both the protein levels of p53 and its affinity for specific DNA sequences. Stabilization of p53 in response to DNA damage is caused by its dissociation from Mdm2, a downstream target gene of p53 and a protein that targets p53 for degradation in the proteosome. Recent studies have suggested that phosphorylation of human p53 at Ser20 is important for stabilizing p53 in response to DNA damage through disruption of the interaction between Mdm2 and p53. We generated mice with an allele encoding changes at Ser20, known to be essential for p53 accumulation following DNA damage, to enable analyses of p53 stabilization in vivo. Our data showed that the mutant p53 was clearly defective for full stabilization of p53 in response to DNA damage. We concluded that Ser20 phosphorylation is critical for modulating the negative regulation of p53 by Mdm2, probably through phosphorylation-dependent inhibition of p53-Mdm2 interaction in the physiological context.

Urban Particulate Matter-Induced Oxidative Damage Upon DNA, Protein, and Human Lung Epithelial Cell (A549): PM2.5 is More Damaging to the Biomolecules than PM10 Because of More Mobilized Transition Metals

  • Song, H-S;Chang, W-C;Bang, W-G;Kim, Y-S;Chung, N
    • Proceedings of the Korea Society of Environmental Toocicology Conference
    • /
    • 2002.10a
    • /
    • pp.169-169
    • /
    • 2002
  • The mobilizable amount of transition metals is a fraction of the total amount of the metal from urban particulate matter. Although the fraction is small, some metals (Fe, Cu) are the major participants in a reaction that generates reactive oxygen species (ROS), which can damage various biomolecules. Damaging effects of the metals can be measured by the single strand breakage (SSB) of X174 RFI DNA or the carbonyl formation of protein. In another study, we have shown that more metals are mobilized by PM2.5 than by PM10 in general. DNA SSB of >20% for PM2.5 and >15% for PM10 was observed in the presence of chelator (EDTA or citrate)/reductant (ascorbate), compared to the control (<3%) only with the chelator. The carbonyl formation by both PMs was very similar in the presence of the chelator, regardless of the kind of proteins. Compared to the control in the absence of chelator/reductant, 3.3 times and 4.9 times more carbonyl formation for PM2.5 and PM10, respectively, was obtained with BSA in the presence of chelator/reductant, showing that PM10 induced 33% more damage than PM2.5. However, 4.8 times and 1.9 times more carbonyl formation for PM2.5 and PM10, respectively, was observed with lysozyme in the presence of chelator/reductant, showing that PM2.5 induced 250% more damage than PM10. Although different proteins showed different sensitivities toward ROS, all these results indicate that the degrees of the oxidation of or damage to the biomolecules by the mobilized metals were higher with PM2.5 than with PM10. Therefore, it is expected that more metals mobilized from PM2.5 than from PM10, more damage to the biomolecules by PM2.5 than by PM10. We suggest that when the toxicity of the dust particle is considered, the particle size as well as the mobilizable fraction of the metal should be considered in place of the total amounts.

  • PDF

Functional Analysis of RAD4 Gene Required for Nucleotide Excision Repair of UV-induced DNA Damage in Saccharomyces cerevisiae

  • Park, Sang Dai;Park, In Soon
    • Animal cells and systems
    • /
    • v.6 no.4
    • /
    • pp.311-315
    • /
    • 2002
  • The RAD4 gene is essential for nucleotide excision repair in Saccharomyces cerevisiae. It has been known that the deduced amino acid sequence of Rad4 protein contains three DNA-dependent ATPase/helicase motifs. To determine the biochemical activities and functional role of RAD4 the Rad4 protein was expressed and purified. Immunoblot analysis showed a specific band of 21 kDa, which was well-matched with the size of open reading frame of the RAD4 gene. The purified Rad4 protein had no detectable helicase activity. However, the protein could interact with double stranded oligonucleotides, as judged by mobility shift assay. This result suggests that the Rad4 protein is a DNA binding protein.

Genetic Screen for Genes Involved in Chk2 Signaling in Drosophila

  • Park, Suk-Young;Song, Young-Han
    • Molecules and Cells
    • /
    • v.26 no.4
    • /
    • pp.350-355
    • /
    • 2008
  • Chk2 is a well characterized protein kinase with key roles in the DNA damage response. Chk2 is activated by phosphorylation following DNA damage, and relays that signal to various substrate proteins to induce cell cycle arrest, DNA repair, and apoptosis. In order to identify novel components of the Chk2 signaling pathway in Drosophila, we screened 2,240 EP misexpression lines for dominant modifiers of an adult rough eye phenotype caused by Chk2 overexpression in postmitotic cells of the eye imaginal disc. The rough eye phenotype was suppressed by mutation of the ATM kinase, a well-described activator of Chk2. Twenty-five EP modifiers were identified (three enhancers and 22 suppressors), none of which correspond to previously known components of Chk2 signaling. Three EPs caused defects in G2 arrest after irradiation with incomplete penetrance when homozygous, and are likely directly involved in the response to DNA damage. Possible roles for these modifiers in the DNA damage response and Chk2 signaling are discussed.

Prognostic Value of Serum S100 Protein by Elecsys S100 Immunoassay in Patients with Spontaneous Subarachnoid and Intracerebral Hemorrhages

  • Yoon, Seok-Mann;Choi, Young-Jin;Kim, Hwi-Jun;Shim, Jai-Joon;Bae, Hack-Gun;Yun, Il-Gyu
    • Journal of Korean Neurosurgical Society
    • /
    • v.44 no.5
    • /
    • pp.308-313
    • /
    • 2008
  • Objective: The serum S100 protein has been known to reflect the severity of neuronal damage. The purpose of this study was to assess the prognostic value of the serum S100 protein by Elecsys S100 immunoassay in patients with subarachnoid hemorrhage (SAH) and intracerebral hemorrhage (ICH) and to establish reference value for this new method. Methods: Serum S100 protein value was measured at admission, day 3 and 7 after bleeding in 42 consecutive patients (SAH : 20, ICH : 22) and 74 healthy controls, prospectively. Admission Glasgow coma scale (GCS) score, Hunt & Hess grade and Fisher grade for SAH, presence of intraventricular hemorrhage, ICH volume, and outcome at discharge were evaluated. Degrees of serum S100 elevation and their effect on outcomes were compared between two groups. Results: Median S100 levels in SAH and ICH groups were elevated at admission (0.092 versus $0.283{\mu}g/L$) and at day 3 (0.110 versus $0.099{\mu}g/L$) compared to healthy controls ($0.05{\mu}g/L;$ p<0001). At day 7, however, these levels were normalized in both groups. Time course of S100 level in SAH patient was relatively steady at least during the first 3 days, whereas in ICH patient it showed abrupt S100 surge on admission and then decreased rapidly during the next 7 days, suggesting severe brain damage at the time of bleeding. In ICH patient, S100 level on admission correlated well with GCS score (r=-0.859; p=0.0001) and ICH volume (r=0.663; p=0.001). A baseline S100 level more than $0.199{\mu}g/L$ predicted poor outcome with 92% sensitivity and 90% specificity. Logistic regression analyses showed Ln (S100) on admission as the only independent predictor of poor outcome (odd ratio 36.1; 95% CI, 1.98 to 656.3) Conclusion: Brain damage in ICH patient seems to develop immediately after bleeding, whereas in SAH patients it seems to be sustained for few days. Degree of brain damage is more severe in ICH compared to SAH group based on the S100 level. S100 level is considered an independent predictor of poor outcome in patient with spontaneous ICH, but not in SAH. Further study with large population is required to confirm this result.

Backbone Dynamics and Model-Free Analysis of N-terminal Domain of Human Replication Protein A 70

  • Yoo, Sooji;Park, Chin-Ju
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.22 no.1
    • /
    • pp.18-25
    • /
    • 2018
  • Replication protein A (RPA) is an essential single-stranded DNA binding protein in DNA processing. It is known that N terminal domain of RPA70 (RPA70N) recruits various protein partners including damage-response proteins such as p53, ATRIP, Rad9, and MRE11. Although the common binding residues of RPA70N were revealed, dynamic properties of the protein are not studied yet. In this study, we measured $^{15}N$ relaxation parameters ($T_1,\;T_2$ and heteronuclear NOE) of human RPA70N and analyzed them using model-free analysis. Our data showed that the two loops near the binding site experience fast time scale motion while the binding site does not. It suggests that the protein binding surface of RPA70N is mostly rigid for minimizing entropy cost of binding and the loops can experience conformational changes.

The effects of early exercise in traumatic brain-injured rats with changes in motor ability, brain tissue, and biomarkers

  • Kim, Chung Kwon;Park, Jee Soo;Kim, Eunji;Oh, Min-Kyun;Lee, Yong-Taek;Yoon, Kyung Jae;Joo, Kyeung Min;Lee, Kyunghoon;Park, Young Sook
    • BMB Reports
    • /
    • v.55 no.10
    • /
    • pp.512-517
    • /
    • 2022
  • Traumatic brain injury (TBI) is brain damage which is caused by the impact of external mechanical forces. TBI can lead to the temporary or permanent impairment of physical and cognitive abilities, resulting in abnormal behavior. We recently observed that a single session of early exercise in animals with TBI improved their behavioral performance in the absence of other cognitive abnormalities. In the present study, we investigated the therapeutic effects of continuous exercise during the early stages of TBI in rats. We found that continuous low-intensity exercise in early-stage improves the locomotion recovery in the TBI of animal models; however, it does not significantly enhance short-term memory capabilities. Moreover, continuous early exercise not only reduces the protein expression of cerebral damage-related markers, such as Glial Fibrillary Acid Protein (GFAP), Neuron-Specific Enolase (NSE), S100β, Protein Gene Products 9.5 (PGP9.5), and Heat Shock Protein 70 (HSP70), but it also decreases the expression of apoptosis-related protein BAX and cleaved caspase 3. Furthermore, exercise training in animals with TBI decreases the microglia activation and the expression of inflammatory cytokines in the serum, such as CCL20, IL-13, IL-1α, and IL-1β. These findings thus demonstrate that early exercise therapy for TBI may be an effective strategy in improving physiological function, and that serum protein levels are useful biomarkers for the predicition of the effectiveness of early exercise therapy.

Inhibition Effects of Persicaria amphibia (L.) Delarbre on Oxidative DNA Damage via ATM/Chk2/p53 pathway

  • So-Yeon Han;Hye-Jeong Park;Jeong-Yong Park;Seo-Hyun Yun;Mi-Ji Noh;Soo-Yeon Kim;Tae-Won Jang;Jae-Ho Park
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2021.04a
    • /
    • pp.52-52
    • /
    • 2021
  • Persicaria amphibia as an England native plant, is a rhizomatous perennial, one of the rather amphibious plants. Its aquatic form contains water-soluble sugars, starch, and protein. P. amphibia have up to 18% tannins in stems and rhizomes. Previous studies have confirmed the anti-inflammatory activity of live bacteria roots, but no studies on bioactivity are known. DNA damage responses (DDRs) pathways are considered a crucial factor affecting the alleviation of cellular damage. The ataxia-telangiectasia mutated and Rad3 related (ATM) and checkpoint kinase 2 (Chk2) pathways are the main pathways of DNA damage response. Also, p53 is a key integrator of cellular response to oxidative DNA damage, contributing repair, or leading transcription including apoptosis. In the present study, we conducted an investigation into the inhibitory effects of P. amphibia on oxidative DNA damage for confirming potential to complementary medicine and therapies. In conclusion, P. amphibia can provide protective effects against double-stranded DNA break (DSB) caused by oxidative DNA damage.

  • PDF

Characterization of a novel methionine sulfoxide reductase A from tomato (Solanum lycopersicum), and its protecting role in Escherichia coli

  • Dai, Changbo;Singh, Naresh Kumar;Park, Myung-Ho
    • BMB Reports
    • /
    • v.44 no.12
    • /
    • pp.805-810
    • /
    • 2011
  • Methionine sulfoxide reductase A (MSRA) is a ubiquitous enzyme that has been demonstrated to reduce the S enantiomer of methionine sulfoxide (MetSO) to methionine (Met) and can protect cells against oxidative damage. In this study, we isolated a novel MSRA (SlMSRA2) from Micro-Tom (Solanum lycopersicum L. cv. Micro-Tom) and characterized it by subcloning the coding sequence into a pET expression system. Purified recombinant protein was assayed by HPLC after expression and refolding. This analysis revealed the absolute specificity for methionine-S-sulfoxide and the enzyme was able to convert both free and protein-bound MetSO to Met in the presence of DTT. In addition, the optimal pH, appropriate temperature, and $K_m$ and $K_{cat}$ values for MSRA2 were observed as 8.5, $25^{\circ}C$, $352{\pm}25\;{\mu}M$, and $0.066{\pm}0.009\;S^{-1}$, respectively. Disk inhibition and growth rate assays indicated that SlMSRA2 may play an essential function in protecting E. coli against oxidative damage.