• Title/Summary/Keyword: protein assembly

Search Result 255, Processing Time 0.026 seconds

Evidence of an Alternative Route of Cellobiase Secretion in the Presence of Brefeldin A in the Filamentous Fungus Termitomyces clypeatus

  • Banik, Samudra Prosad;Pal, Swagata;Chowdhury, Sudeshna;Ghorai, Shakuntala;Khowala, Suman
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.4
    • /
    • pp.412-420
    • /
    • 2011
  • Secretion of cellobiase occurred in a brefeldin A (BFA) uninhibited manner in the filamentous fungus Termitomyces clypeatus. Fluorescence confocal microscopy revealed that application of the drug at a concentration of 50 ${\mu}g$/ml caused arrest of Spitzenkorper assembly at the hyphal tip. This resulted in greater than 30% inhibition of total protein secretion in the culture medium. However, the cellobiase titer increased by 17%, and an additional 13% was localized in the vacuolar fraction en route secretion. The secretory vacuoles formed in the presence of the drug were also found to be bigger (68 nm) than those in the control cultures (40 nm). The enzyme secreted in the presence and absence of BFA revealed a single activity band in both cases in native PAGE and had similar molecular masses (approx. 120 kDa) in SDS-PAGE. The BFA enzyme retained 72% of native glycosylation. It also exhibited a higher stability and retained 98% activity at $50^{\circ}C$, 93.3% activity at pH 9, 63.64% activity in the presence of 1M guanidium hydrochloride, and 50% activity at a glucose concentration of 10 mg/ml in comparison to 68% activity, 75% activity, 36% activity, and 19% activity for the control enzyme, respectively. The observations collectively aimed at the operation of an alternative secretory pathway, distinct from the target of brefeldin A, which bypassed the Golgi apparatus, but still was able to deliver the cargo to the vacuoles for secretion. This can be utilized in selectively enhancing the yield and stability of glycosidases for a successful industrial recipe.

Genome Information of Maribacter dokdonensis DSW-8 and Comparative Analysis with Other Maribacter Genomes

  • Kwak, Min-Jung;Lee, Jidam;Kwon, Soon-Kyeong;Kim, Jihyun F.
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.3
    • /
    • pp.591-597
    • /
    • 2017
  • Maribacter dokdonensis DSW-8 was isolated from the seawater off Dokdo in Korea. To investigate the genomic features of this marine bacterium, we sequenced its genome and analyzed the genomic features. After de novo assembly and gene prediction, 16 contigs totaling 4,434,543 bp (35.95% G+C content) in size were generated and 3,835 protein-coding sequences, 36 transfer RNAs, and 6 ribosomal RNAs were detected. In the genome of DSW-8, genes encoding the proteins associated with gliding motility, molybdenum cofactor biosynthesis, and utilization of several kinds of carbohydrates were identified. To analyze the genomic relationships among Maribacter species, we compared publically available Maribacter genomes, including that of M. dokdonensis DSW-8. A phylogenomic tree based on 1,772 genes conserved among the eight Maribacter strains showed that Maribacter speices isolated from seawater are distinguishable from species originating from algal blooms. Comparison of the gene contents using COG and subsystem databases demonstrated that the relative abundance of genes involved in carbohydrate metabolism are higher in seawater-originating strains than those of algal blooms. These results indicate that the genomic information of Maribacter species reflects the characteristics of their habitats and provides useful information for carbon utilization of marine flavobacteria.

MAPK Activity in Porcine Oocytes Maturing InVitro (유사분열 활성화 단백질 효소가 돼지난자의 체외성숙에 미치는 영향)

  • Lee, Jae-Dal
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.6
    • /
    • pp.2124-2128
    • /
    • 2010
  • In this study, we determined effects of the mitogen-activated protein kinase (MAPK) inhibitor, U0126 on meiotic maturation, microtubule organization and actin filament assembly in the porcine oocyte. The phosphorylated MAPK was first detected at 12 h after the initiation of maturation cultures, fully activated at 24h, and remained until metaphase II. Treatment of germinal vesicle (GV) stage oocytes with $20{\mu}M$ U0126 completely blocked MAPK phosphorylation, but germinal vesicle breakdown (GVBD) was normally proceeded. However, the oocytes didn‘t progress to the metaphase I. The inhibition of MAPK resulted in abnormal spindles. In oocytes treated with U0126 after GVBD, polar body extrusion was normal, but the organization of the metaphase plate and chromosome segregation were abnormal. In conclusion, MAPK activity plays an important regulatory role in GV chromatin configuration and meiotic progress in porcine oocyte maturation.

Effect of Multiple Copies of Cohesins on Cellulase and Hemicellulase Activities of Clostridium cellulovorans Mini-cellulosomes

  • Cha, Jae-Ho;Matsuoka, Satoshi;Chan, Helen;Yukawa, Hideaki;Inui, Masayuki;Doi, Roy H.
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.11
    • /
    • pp.1782-1788
    • /
    • 2007
  • Cellulosomes in Clostridium cellulovorans are assembled by the interaction between the repeated cohesin domains of a scaffolding protein (CbpA) and the dockerin domain of enzyme components. In this study, we determined the synergistic effects on cellulosic and hemicellulosic substrates by three different recombinant mini-cellulosomes containing either endoglucanase EngB or endoxylanase XynA bound to mini-CbpA with one cohesin domain (mini-CbpAl), two cohesins (mini-CbpA12), or four cohesins (mini-CbpAl234). The assembly of EngB or XynA with mini-CbpA increased the activity against carboxymethyl cellulose, acid-swollen cellulose, Avicel, xylan, and com fiber 1.1-1.8-fold compared with that for the corresponding enzyme alone. A most distinct improvement was shown with com fiber, a natural substrate containing xylan, arabinan, and cellulose. However, there was little difference in activity between the three different mini-cellulosomes when the cellulosomal enzyme concentration was held constant regardless of the copy number of cohesins in the cellulosome. A synergistic effect was observed when the enzyme concentration was increased to be proportional to the number of cohesins in the mini-cellulosome. The highest degree of synergy was observed with mini-CbpAl234 (1.8-fold) and then mini-CbpAl2 (1.3-fold), and the lowest synergy was observed with mini-CbpAl (1.2-fold) when Avicel was used as the substrate. As the copy number of cohesin was increased, there was more synergy. These results indicate that the clustering effect (physical enzyme proximity) of the enzyme within the mini-cellulosome is one of the important factors for efficient degradation of plant cell walls.

Structural Maintenance of Chromosomes 4 is a Predictor of Survival and a Novel Therapeutic Target in Colorectal Cancer

  • Feng, Xiao-Dong;Song, Qi;Li, Chuan-Wei;Chen, Jian;Tang, Hua-Mei;Peng, Zhi-Hai;Wang, Xue-Chun
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.21
    • /
    • pp.9459-9465
    • /
    • 2014
  • Background: Structural maintenance of chromosomes 4 (SMC-4) is a chromosomal ATPase which plays an important role in regulate chromosome assembly and segregation. However, the role of SMC-4 in the incidence of malignancies, especially colorectal cancer is still poorly understood. Materials and Methods: We here used quantitative PCR and Western blot analysis to examine SMC-4 mRNA and protein levels in primary colorectal cancer and paired normal colonic mucosa. SMC-4 clinicopathological significance was assessed by immunohistochemical staining in a tissue microarray (TMA) in which 118 cases of primary colorectal cancer were paired with noncancerous tissue. The biological function of SMC-4 knockdown was measured by CCK8 and plate colony formation assays. Fluorescence detection has been used to detect cell cycling and apoptosis. Results: SMC-4 expression was significantly higher in colorectal cancer and associated with T stage, N stage, AJCC stage and differentiation. Knockdown of SMC-4 expression significantly suppressed the proliferation of cancer cells and degraded its malignant degree. Conclusions: Our clinical and experimental data suggest that SMC-4 may contribute to the progression of colorectal carcinogenesis. Our study provides a new therapeutic target for colorectal cancer treatment.

SEPT12 Interacts with SEPT6 and This Interaction Alters the Filament Structure of SEPT6 in Hela Cells

  • Ding, Xiangming;Yu, Wenbo;Liu, Ming;Shen, Suqin;Chen, Fang;Wan, Bo;Yu, Long
    • BMB Reports
    • /
    • v.40 no.6
    • /
    • pp.973-978
    • /
    • 2007
  • Septins are a family of conserved cytoskeletal GTPase forming heteropolymeric filamentous structure in interphase cells, however, the mechanism of assembly are largely unknown. Here we described the characterization of SEPT12, sharing closest homology to SEPT3 and SEPT9. It was revealed that subcelluar localization of SEPT12 varied at interphase and mitotic phase. While SEPT12 formed filamentous structures at interphase, it was localized to the central spindle and to midbody during anaphase and cytokinesis, respectively. In addition, we found that SEPT12 can interact with SEPT6 in vitro and in vivo, and this interaction was independent of the coiled coil domain of SEPT6. Further, co-expression of SEPT12 altered the filamentous structure of SEPT6 in Hela cells. Therefore, our result showed that the interaction between different septins may affect the septin filament structure.

Synthesis and Structural Studies of an Organic Complex and its Association with BSA

  • Meng, Fa-Yan;Yu, Sheng-Rong;Liang, Li-Xi;Zhong, Xue-Ping;Wang, Li;Zhu, Jin-Mei;Lin, Cui-Wu
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.7
    • /
    • pp.2253-2259
    • /
    • 2011
  • The self-assembly of one novel organic complex based on chlorogenic acid (HCA) and 2,2'-bipyridine (2,2'-bipy) has been synthesized and characterized. The complex achieved by hydrogen-bonding interactions, adopted a 1:1 stoichiometry in a solid state. The proton transfer occurred from the carboxyl oxygen to the aromatic nitrogen atom to form salts CA${\cdot}$(2,2'-Hbipy), the 2,2'-Hbipy molecule individually occupies the pseudo-tetragonum that is formed with CA. In this paper, the interactions of CA${\cdot}$(2,2'-Hbipy) with bovine serum albumin (BSA) were studied by fluorescence spectrometry. For CA${\cdot}$(2,2'-Hbipy), HCA and 2,2'-bipy, the average quenching constants for BSA were $2.4384{\times}10^4$, $4.653{\times}10^3$, and $3.059{\times}10^3\;L{\cdot}mol^{-1}$, respectively. The mechanism for protein fluorescence quenching is apparently governed by a static quenching process. The Stern-Volmer quenching constants and corresponding thermodynamic parameters ${\Delta}$H, ${\Delta}$G and ${\Delta}$S were calculated. The binding constants and the number of binding sites were also investigated. The conformational changes of BSA were observed from synchronous fluorescence spectra.

Corosolic acid ameliorates acute inflammation through inhibition of IRAK-1 phosphorylation in macrophages

  • Kim, Seung-Jae;Cha, Ji-Young;Kang, Hye Suk;Lee, Jae-Ho;Lee, Ji Yoon;Park, Jae-Hyung;Bae, Jae-Hoon;Song, Dae-Kyu;Im, Seung-Soon
    • BMB Reports
    • /
    • v.49 no.5
    • /
    • pp.276-281
    • /
    • 2016
  • Corosolic acid (CA), a triterpenoid compound isolated from Lagerstroemia speciosa L. (Banaba) leaves, exerts anti-inflammatory effects by regulating phosphorylation of interleukin receptor- associated kinase (IRAK)-2 via the NF-κB cascade. However, the protective effect of CA against endotoxic shock has not been reported. LPS (200 ng/mL, 30 min) induced phosphorylation of IRAK-1 and treatment with CA (10 μM) significantly attenuated this effect. In addition, CA also reduced protein levels of NLRP3 and ASC which are the main components of the inflammasome in BMDMs. LPS-induced inflammasome assembly through activation of IRAK-1 was down-regulated by CA challenge. Treatment with Bay11-7082, an inhibitor of IκB-α, had no effect on CA-mediated inhibition of IRAK-1 activation, indicating that CA-mediated attenuation of IRAK-1 phosphorylation was independent of NF-κB signaling. These results demonstrate that CA ameliorates acute inflammation in mouse BMDMs and CA may be useful as a pharmacological agent to prevent acute inflammation.

Effects of spThoc7 Deletion on Growth and mRNA Export in Fission Yeast (분열효모에서 spThoc7 유전자의 결실이 생장 및 mRNA Export에 미치는 영향)

  • Koh, Eun-Jin;Yoon, Jin Ho
    • Korean Journal of Microbiology
    • /
    • v.50 no.3
    • /
    • pp.249-253
    • /
    • 2014
  • THOC7/Mft1 is a member of the THO complex that is an evolutionally conserved assembly connecting transcription elongation with mRNP packaging and mRNA export. In fission yeast Schizosaccharomyces pombe, an ortholog (spThoc7) of THOC7/Mft1 was isolated by partial complementation of the lethality in synthetic lethal mutant, SLRsm1. A deletion mutant in a diploid strain was constructed by replacing one of spThoc7-coding region with an $ura4^+$ gene using one-step gene disruption method. Tetrad analysis showed that the spthoc7 is nonessential for growth. But the ${\Delta}thoc7$ null mutant showed slight defects of both growth and mRNA export. And the functional spThoc7-GFP protein is localized mainly in the nucleus. These results suggest that spThoc7 is also involved in mRNA export from the nucleus to cytoplasm.

Transcriptome-based identification of water-deficit stress responsive genes in the tea plant, Camellia sinensis

  • Tony, Maritim;Samson, Kamunya;Charles, Mwendia;Paul, Mireji;Richard, Muoki;Mark, Wamalwa;Stomeo, Francesca;Sarah, Schaack;Martina, Kyalo;Francis, Wachira
    • Journal of Plant Biotechnology
    • /
    • v.43 no.3
    • /
    • pp.302-310
    • /
    • 2016
  • A study aimed at identifying putative drought responsive genes that confer tolerance to water stress deficit in tea plants was conducted in a 'rain-out shelter' using potted plants. Eighteen months old drought tolerant and susceptible tea cultivars were each separately exposed to water stress or control conditions of 18 or 34% soil moisture content, respectively, for three months. After the treatment period, leaves were harvested from each treatment for isolation of RNA and cDNA synthesis. The cDNA libraries were sequenced on Roche 454 high-throughput pyrosequencing platform to produce 232,853 reads. After quality control, the reads were assembled into 460 long transcripts (contigs). The annotated contigs showed similarity with proteins in the Arabidopsis thaliana proteome. Heat shock proteins (HSP70), superoxide dismutase (SOD), catalase (cat), peroxidase (PoX), calmodulinelike protein (Cam7) and galactinol synthase (Gols4) droughtrelated genes were shown to be regulated differently in tea plants exposed to water stress. HSP70 and SOD were highly expressed in the drought tolerant cultivar relative to the susceptible cultivar under drought conditions. The genes and pathways identified suggest efficient regulation leading to active adaptation as a basal defense response against water stress deficit by tea. The knowledge generated can be further utilized to better understand molecular mechanisms underlying stress tolerance in tea.