• Title/Summary/Keyword: protein absorbed

Search Result 99, Processing Time 0.026 seconds

Modeling Nutrient Supply to Ruminants: Frost-damaged Wheat vs. Normal Wheat

  • Yu, Peiqiang;Racz, V.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.23 no.3
    • /
    • pp.333-339
    • /
    • 2010
  • The objectives of this study were to use the NRC-2001 model and DVE/OEB system to model potential nutrient supply to ruminants and to compare frost damaged (also called "frozen" wheat with normal wheat. Quantitative predictions were made in terms of: i) Truly absorbed rumen synthesized microbial protein in the small intestine; ii) Truly absorbed rumen undegraded feed protein in the small intestine; iii) Endogenous protein in the digestive tract; iv). Total truly absorbed protein in the small intestine; and v). Protein degraded balance. The overall yield losses of the frozen wheat were 24%. Results showed that using the DVE/OEB system to predict the potential nutrient supply, the frozen wheat had similar truly absorbed rumen synthesized microbial protein (65 vs. 66 g/kg DM; p>0.05), tended to have lower truly absorbed rumen undegraded feed protein (39 vs. 53 g/kg DM; p<0.10) and had higher endogenous protein (14 vs. 9 g/kg DM; p<0.05). Total truly absorbed protein in the small intestine was significantly lower (89 vs. 110 g/kg DM, p<0.05) in the frozen wheat. The protein degraded balance was similar and both were negative (-2 vs. -1 g/kg DM). Using the NRC-2001 model to predict the potential nutrient supply, the frozen wheat also had similar truly absorbed rumen synthesized microbial protein (average 56 g/kg DM; p>0.05), tended to have lower truly absorbed rumen undegraded feed protein (35 vs. 48, g/kg DM; p<0.10) and had similar endogenous protein (average 4 g/kg DM; p>0.05). Total truly absorbed protein in the small intestine was significantly lower (95 vs. 108 g/kg DM, p<0.05) in the frozen wheat. The protein degraded balance was not significantly different and both were negative (-16 vs. -19 g/kg DM). In conclusion, both models predict lower protein value and negative protein degraded balance in the frozen wheat. The frost damage to the wheat reduced nutrient content and availability and thus reduced nutrient supply to ruminants by around 12 to 19%.

Comparison of the Efficiency of Absorbed Nitrogen Use from Different Protein Sources in Diets Having Similar Amino Acid Balance

  • Lee, K.U.;Boyd, R.D.;Austic, R.E.;Ross, D.A.;Han, In K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.11 no.6
    • /
    • pp.725-731
    • /
    • 1998
  • Nine crossbred female pigs fitted with the bladder catheters were used to investigate the effects of dietary protein form on the efficiency of absorbed nitrogen for nitrogen retention in growing pigs. Combinations of the main protein sources were corn-soybean meal (CSM; slow + slow absorption rate form), corn-hydrolyzed casein (CAS; slow + rapid absorption rate form) and corn-porcine plasma (CPL; slow + intermediate absorption rate form). All experimental diets were formulated to be isonitrogenous (CP 11%) and isocaloric (3.5 Mcal/kg) and synthetic amino acids were added to the diet as required to maintain an equivalent amino acid profile among diets. Fecal digestibility of nitrogen was not different among treatments (p > 0.10). Ingested nitrogen was absorbed with an apparent efficiency of 82% to 84%. Mean nitrogen retention in pigs fed the CSM diet was as high as for pigs fed the CPL diet (0.74 g N/kg $BW^{0.75}$ per d), which was higher than the N retention rate in pigs fed CAS diet (0.68 g/kg $BW^{0.75}$ per d; P < 0.05). Apparent biological values (ABV = 100 ${\times}$ N retention/absorbed nitrogen) were 63.3%, 58.0% and 61.6% for CSM, CAS, and CPL groups, respectively (p < 0.05). There was no difference in mean energy digestibility among treatments. The efficiency of absorbed lysine utilization was significantly different among treatments (p < 0.05). Pigs fed the CAS diet were inferior to counterparts on the other diets in utilizing absorbed lysine. The ratios of free (and small peptide-bound) to protein-bound amino acids in CSM diet differed considerably from the CAS diet. This may affect the efficiency of amino acids utilization for nitrogen retention if hydrolyzed and intact amino acid pools reach the blood at different times.

Accumulation and Organ distribution of protein Bound Cadmium in Rats compared with CdCl2 (단백질에 결합된 카드뮴과 CdCl2를 섭취한 쥐에서 카드뮴의 체내축적 및 분포의 차이)

  • 이명희
    • Journal of Nutrition and Health
    • /
    • v.27 no.8
    • /
    • pp.828-836
    • /
    • 1994
  • A low level exposure experiment was conducted on growing rats to investigate the accumulation and organ distribution of protein bound cadmium compared with cadmium chloride. Male Sprague-Dawley rats were fed for 21days with one of the semisynthetic diets, which contains cadmium as either bovine liver- or kidney meal bound cadmium, cadmium chloride with uncontaminated liver meal or cadmium chloride without organ meal, in the levels of ca. 0.5, 1 and 1.5mg/kg diet, respectively. After 21days of exposure cadmium was accumulated in liver, kidney and gastrointestinal tracts depending upon cadmium levels in diet. Inspite of very low cadmium accumulation in whole blood, it tends also to increase with dietary cadmium levels. The blood cadmium concentration of animals fed organ meal containing diets was about 4-7 fold higher than that without organ meal, regardless of cadmium was intrinsically bound to protein or not. However, significant effects of organ protein on cadmium accumulation in liver, kidney and digestive tracts were not detectable, when cadmium was supplemented as cadmium chloride. On the other hands, animals fed diet containing ca. 1.5mg Cd/kg as organ bound cadmium retained more cadmium in liver, kidney and digestive tracts compared to cadmium chloride with organ meal, whereby the increase of cadmium concentration in kidney was greater then in liver. However, when the concentration of protein bound cadmium was<1mg/kg diet, organ bound cadmium was not significantly different from cadmium chloride in bioavailability and organ distribution. From this result it is suggested that the intestinal absorption of protein bound cadmium is influenced of the amount of cadmium bound in protein. When cadmium concentration in protein is relatively low, protein bound cadmium seems to be absorbed in the same way as cadmium ions are absorbed. However, when the concentration is high, at least a small amount of intact protein bound cadmium could be absorbed and accumulated selectively in kidney.

  • PDF

INFLUENCE OF DIETARY PROTEIN ON THE APPARENT ABSORPTION AND RETENTION OF SELENIUM IN SHEEP

  • Serra, A.B.;Serra, S.D.;Fujihara, T.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.9 no.5
    • /
    • pp.551-556
    • /
    • 1996
  • Selenium (Se) apparent absorption and retention in sheep as influenced by diets differing in protein content through soybean meal supplementation was studied. A $3{\times}3$ Latin square design was used with three Japanese Corriedale wethers (45 kg average body weight), three periods, and three dietary treatments. In each period, 7 d dietary adjustment was followed by 5 d total collection of urine and feces. The three dietary treatments were : Diet 1, without soybean meal supplementation (14% crude protein, CP); Diet 2, with 10% soybean meal supplementation (16.5% CP); and Diet 3, with 20% soybean meal supplementation (19% CP). All the diets had a Se supplementation in the form of sodium selenite at 0.2 mg Se/kg dietary DM. The dietary DM intake of the animals was 2% of their body weight. No significant differences were obtained among the three dietary treatments of the Se balance of the animals. However, as percent of Se intake, only urinary Se concentration of Diet 3 was markedly lower (p < 0.05) than the other diets. Fecal Se as percent of Se intake followed the trend of Diet 3> Diet 2 > Diet 1 resulting a Se absorbed as percent of Se intake of 58.9%, 62.3% and 68.2% for Diets 3, 2 and 1, respectively but their differences among each other were insignificant. No significant differences that were observed either on Se retained as percent of intake (Diet 1, 48.2%; Diet 2, 45.2%; Diet 3, 46.0%) or Se retained as percent of Se absorbed (Diet 1, 70.7%; Diet 2, 72.4%; Diet 3, 77.9%). Significant correlation coefficients among the various measures of Se utilization were also observed. Regression analysis showed the following equation: Y = 93.8 - 1.86X (p <0.05, $r^{2}=0.48$), where Y is the Se absorbed as percent of Se intake (%) and X is the dietary protein content (%). This study concludes that Se requirement in sheep is greater when dietary protein content is high.

Model Prediction of Nutrient Supply to Ruminants from Processed Field Tick Beans

  • Yu, P.;Christensen, D.A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.12
    • /
    • pp.1674-1680
    • /
    • 2004
  • The objective of this study was to compare the Dutch DVE/OEB system and the NRC-2001 model in the prediction of supply of protein to dairy cows from processed field tick beans. Comparisons were made in terms of 1) ruminally synthesized microbial CP, 2) truly absorbed protein in the small intestine, and 3) degraded protein balance. The results showed that the predicted values from the DVE/OEB system and the NRC-2001 model had significant correlations with high R (>0.90) values. However, using the DVE/OEB system, the overall average microbial protein supply based on available energy was 16% higher and the truly absorbed protein in the small intestine was 9% higher than that predicted by the NRC-2001 model. The difference was also found in the prediction of the degraded protein balances (DPB), which was 5% lower than that predicted based on data from the NRC-2001 model. These differences are due to considerably different factors used in calculations in the two models, although both are based on similar principles. It need to mention that this comparison was based on the limited data, the full comparison involving various types of concentrate feeds will be investigated in the future.

Determination of Optimal Conditions of Pressure Toasting on Legume Seeds for Dairy Deed Industry : I. Effects of Pressure Toasting on Nutritive Values of Lupinus albus in Lactating Dairy Cows

  • Yu, P.;Goelema, J.O.;Tamminga, S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.12 no.8
    • /
    • pp.1205-1214
    • /
    • 1999
  • Whole lupinus albus seeds were pressure toasted at temperatures of 100, 118 and $136^{\circ}C$ for 3, 7, 15 and 30 min to study rumen degradation and post-rumen digestion and to determine optimal heating conditions for the Dutch dairy feed industry. In sacco nylon bag and mobile bag techniques were employed for rumen and intestine incubations to determine ruminal degradation characteristics and intestinal digestion of crude protein (CP) in 4 lactation rumen cannulated and 4 lactating intestinal cannulated Dutch dairy cows fed 47% hay and 53% concentrate according to Dutch dairy requirements. Measured rumen degradation characteristics were soluble fraction (S), undegradable fraction (U), potentially degradable fraction (D), lag time (T0) and rate of degradation (Kd) of insoluble but degradable fraction. Percentage bypass feed protein (BCP), ruminal microbial protein synthesized based on available nitrogen (N_MP) and that based on available energy (E_MP), true protein supplied to the small intestine (TPSI), truly absorbed BCP (ABCP), absorbed microbial protein (AVP) in the small intestine, endogenous protein losses in the digestion (ENDP), true digested protein in the small intestine (TAP or DVE in Dutch) and degraded protein balance (PDB or OEB in Dutch) were totally evaluated using the new Dutch DVE/OEB System. Pressure toasting decreased (p<0.001) rumen degradability of CP. It reduced S (p<0.05) and Kd (p=0.06), increased D (p<0.05) and U (p<0.01) but did not alter T0 (p>0.05), thus resulting in dramatically increased BCP (p<0.001) with increasing time and temperature from 73.7 (raw) up to 182.5 g/kg DM ($136^{\circ}C/15min$). Although rumen microbial protein synthesized based on available energy (E_MP) was reduced, true protein (microbial and bypass feed protein) supplied to the small intestine (TPSI) was increased (p<0.001) from 153.1 (raw) to 247.6 g/kg DM ($136^{\circ}C/15min$). Due to digestibility of BCP in the intestine not changing (p>0.05) average 87.8%, the absorbed BCP increased (p<0.001) from 62.3 (raw) to 153.7 g/kg DM ($136^{\circ}C/15min$). Therefore DVE value of true digested protein in the small intestine was significantly increased (p<0.001) from 118.9 (raw) to 197.0 g/kg DM ($136^{\circ}C/15min$) and OEB value of degraded protein balance was significantly reduced (p<0.001) from 147.2 (raw) to 63.1 g/kg DM ($136^{\circ}C/15min$). It was concluded that pressure toasting was effective in shifting degradation of CP of lupinus albus from the rumen to small intestine without changing intestinal digestion. Further studies are required on the degradation and digestion of individual amino acids and on the damaging effects of processing on amino acids, especially the first limiting amino acids.

Porcine Somatotropin Improves the Efficiency of Digestible Protein Use for Protein Deposition by Growing Pigs

  • Lee, K.U.;Boyd, R.D.;Austic, R.E.;Ross, D.A.;Beermann, D.H.;Han, In K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.12 no.7
    • /
    • pp.1096-1103
    • /
    • 1999
  • A study was conducted to clarify the impact of recombinant porcine somatotropin (pST) on the efficiency of absorbed nitrogen use for protein deposition in growing pigs. Three levels of dietary crude protein (9.0, 11.5, 14.0% CP) were used. Each had either a sub-optimum or near optimum lysine: CP concentration (Low-lysine, 3.8 g/100 g CP and High-lysine, 5.5 g/100g CP) in order to achieve different metabolic efficiencies for nitrogen deposition (ca. 45 vs. 60%). Twelve crossbred female pigs $(59{\pm}4kg\;BW)$ were placed in metabolism cages and fitted with bladder catheters. Each pig received an excipient injection daily for the first 10-d, a pST (5 mg/d) injection for the second 10-d, and then excipient for the last 10-d. Pigs were randomly assigned to one of six dietary treatments (2 pigs/diet) and fed 4 times per d at $92g/kg\;BW^{0.75}$ $(3{\times}maintenance)$. Means for the excipient period were compared to means for the pST period. Urinary nitrogen (N) output declined in pST-treated pigs (p<0.01) irrespective of dietary protein content or lysine level. Nitrogen retention increased by an average of 11% (p<0.01) with pST treatment (726 vs. $803mg\;N/kg^{0.75}\;BW/d$). Forty-eight percent of the absorbed N was retained with Low-lysine diets, but this increased to 53% with pST injection (+11%, p<0.01). Pigs fed High-lysine diets retained 62% of absorbed N which increased to 69% with pST (+11% p<0.01). the addition of lysine improved N use by 27% (High vs. Low, p<0.01), but the effect of lysine and pST was additive (+40%). Therefore, pST improves N retention and the efficiency of apparently absorbed N use in growing pigs (>60kg). It does so with diets having the potential for either low or high efficiencies of N use (48% and 62%). More work is needed to determine if the partial efficiency of N use improves in direct proportion to pST dose since the improvement in protein deposition is a function of pST dose.

Model to Predict Absorbed Amino Acid Supply at the Proximal Duodenum in Growing Beef Cattle

  • Yan, Xianghua;Xu, Zirong;Zhang, Wen-ju;Wang, Jiaqi
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.3
    • /
    • pp.358-363
    • /
    • 2005
  • Five crossbred beef cattle (Simmental${\times}$yellow cattle, Shantung Province) fitted with permanent cannulae in the rumen and T-type cannulae at the proximal duodenum and terminal ileum, were fed five different diets containing corn, cotton meal or soybean meal and ammoniated straw to determine the dry matter, crude protein and amino acid flows in duodenal and ileum digesta, and to calculate the regression equations between theoretical and experimental concentration of AA in duodenal digesta. The results showed that there was a strong correlation between experimental (g/d, y) and theoretical CP flows (g/d, x) at the proximal duodenum, the $R^2$-value regression equation of crude protein is very high (0.9636). The $R^2$-value regression equation of the limiting amino acid (such as Met or Lys) is high (0.7573 or 0.9252 respectively). This results indicated that we can formulate better diets fed to beef cattle according to the theoretical amino acid concentration. A mathematical model has been successfully constructed for predicting the supply of absorbed amino acids at the proximal duodenum in growing beef cattle.

Protein Evaluation of Dry Roasted Whole Faba Bean (Vicia faba) and Lupin Seeds (Lupinus albus) by the New Dutch Protein Evaluation System: the DVE/OEB System

  • Yu, P.;Egan, A.R.;Leury, B.J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.12 no.6
    • /
    • pp.871-880
    • /
    • 1999
  • The effects of dry roasting (110, 130, $150^{\circ}C$ for 15, 30, 45 min) on potential ruminant protein nutritional values in terms of: a), rumen bypass protein (BCP); b), rumen bypass starch (BST); c), fermented organic matter (FOM); d), true absorbed bypass protein (ABCP); e) microbial protein synthesized in the rumen based on available energy (E_MP); f), microbial protein synthesized in the rumen based on available nitrogen (N_MP); g), true protein supplied to the small intestine (TPSI); h), true absorbed rumen synthesized microbial protein (AMP); i), endogenous protein losses (ENDP); j), true digested protein in the small intestine (DVE); k), degraded protein balance (OEB) of whole lupin seeds (WLS) and faba beans (WFB) were evaluated by the new Dutch DV/OEB protein evaluation system. Dry roasting significantly increased BCP, BST, TPSI, ABCP, DVE (p<0.001) and decreased FOM, E_MP, AMP, N_MP and OEB (p<0.001) with increasing temperatures and times except that when temperature was at $110^{\circ}C$. The values of BCP, BST, TPSI, ABCP and DVE at $150^{\circ}C/45min$ for WLS and WFB were increased 2.2, 3.7; -, 2.0; 1.7, 1.7; 2.3, 3.7 and 1.7, 1.7 times and the values of FOM, E_MP, AMP, N_MP and OEB at $150^{\circ}C/45min$ for WLS and WFB were decreased by 15.3, 25.8; 18.1, 25.8; 18.7, 25.8; 54.6, 41.6 and 82.3% 54.7%, respectively, over the raw WLS and WFB. The results indicated that though dry roasting reduced microbial protein synthesis due to reducing FOM, TPSI didn't decrease but highly increased due to increasing BCP more than enough for compensation of the microbial protein decreasing. Therefore the net absorbable DVE in the small intestine was highly increased. The OEB values were significantly reduced for both WLS and WFB but not to the level of negative. It indicated that microbial protein synthesis might not be impaired due to the sufficient N supplied in the rumen, but the high positive OEB values in the most treatments except of $150^{\circ}C$ for 30 and 45 min of WLS (The OEB values: 54.8 and 26.0 g/kg DM) indicated that there were the large amounts of N loss in the rumen. It was concluded that dry roasting at high temperature was effective in shifting protein degradation from rumen to intestines and it increased the DVE values without reaching the negative OEB values. No optimal treatment was found in WLS due to the too high OEB values in all treatments. But dry roasting at $150^{\circ}C$ for 30 and 45 min might be optimal treatments for WLS due to the very lower OEB values.

Cellular Distribution and Metabolism of Ginsenosides in Rat Liver (쥐 간에서의 Ginsenoside의 세포내 분포와 대사)

  • 윤수희;이희봉
    • Journal of Ginseng Research
    • /
    • v.17 no.2
    • /
    • pp.114-122
    • /
    • 1993
  • 0.5 mg of natural ginsenoside mixture and 0.8 $\mu$Ci of synthesized 14C-ginsenosides were administered orally to a rat and killed at one hour after the ginsenoside administration and the liver was fractionated into nuclear fraction, mitrochondria microsomes and cytosol fraction. Radioactivity distribu lion in subcellular fractions of the liver showed that 32o1c of total radioactivity absorbed in the liver was in cytosol fraction but a significant portion of the radioactivity was also found in mitochondria (26.6%) and microsomal fraction (18.l%). 5.8% of the total radioactivity was recovered from the nuclear fraction as well. This suggested that ginsenosides might be distributed into all subcellular fractions. Activities of mitochondrial aldehyde dehydrogenase, lactate dehydrogenase and malate dehydrogenase of the liver of rat at two hours after the ginsenoside administraion were found appreciably stimulated, suggesting that the ginsenoside concentration in the liver might be around 10-5%, since optimum concentrations for most enzyme catalyzed reactions in vitro were known to be 10-6% 10-4%. A significant portion of the radioactivity recovered from subcellular fractions of the liver was found in protein fractions, suggesting that proteins might interact with ginsenosides. Examination of protein-ginsenoside interation by gel filtration, equilibrium dialysis and amonium sulfate precipitation technique suggesting that proteins and ginsenosides do not bound covalently but weakl\ulcorner combined. When purified ginsenoside Rbl and Rgl were incubated with rat liver cytosolic enzymes for 20 min, the above ginsenosides were hydrolyzed quickly, suggesting that ginsenosides might be rapidly hydrolyzed and metabolized in the liver. It was also observed in vitro that the ginsenosides such as Rbl and Rgl were easily hydrolyzed by rat liver cytosol preparation suggesting that absorbed ginsenosides might be quickly hydrolyzed and metabolized in the liver.

  • PDF