• 제목/요약/키워드: protein A

검색결과 29,954건 처리시간 0.048초

A 43 kD Protein Isolated from the Herb Cajanus indicus L Attenuates Sodium Fluoride-induced Hepatic and Renal Disorders in Vivo

  • Manna, Prasenjit;Sinha, Mahua;Sil, Parames C.
    • BMB Reports
    • /
    • 제40권3호
    • /
    • pp.382-395
    • /
    • 2007
  • The herb, Cajanus indicus L, is well known for its hepatoprotective action. A 43 kD protein has been isolated, purified and partially sequenced from the leaves of this herb. A number of in vivo and in vitro studies carried out in our laboratory suggest that this protein might be a major component responsible for the hepatoprotective action of the herb. Our successive studies have been designed to evaluate the potential efficacy of this protein in protecting the hepatic as well as renal tissues from the sodium fluoride (NaF) induced oxidative stress. The experimental groups of mice were exposed to NaF at a dose of 600 ppm through drinking water for one week. This exposure significantly altered the activities of the antioxidant enzymes like superoxide dismutase (SOD), catalase (CAT), glutathione-S-transferase (GST), glutathione reductase (GR) and the cellular metabolites such as reduced glutathione (GSH), oxidized glutathione (GSSG), total thiols, lipid peroxidation end products in liver and kidney compared to the normal mice. Intraperitoneal administration of the protein at a dose of 2 mg/kg body weight for seven days followed by NaF treatment (600 ppm for next seven days) normalized the activities of the hepato-renal antioxidant enzymes, the level of cellular metabolites and lipid peroxidation end products. Post treatment with the protein for four days showed that it could help recovering the damages after NaF administration. Time-course study suggests that the protein could stimulate the recovery of both the organs faster than natural process. Effects of a known antioxidant, vitamin E, and a non-relevant protein, bovine serum albumin (BSA) have been included in the study to validate the experimental data. Combining all, result suggests that NaF could induce severe oxidative stress both in the liver and kidney tissues in mice and the protein possessed the ability to attenuate that hepato-renal toxic effect of NaF probably via its antioxidant activity.

Protein molecular structure, degradation and availability of canola, rapeseed and soybean meals in dairy cattle diets

  • Tian, Yujia;Zhang, Xuewei;Huang, Rongcai;Yu, Peiqiang
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제32권9호
    • /
    • pp.1381-1388
    • /
    • 2019
  • Objective: The aims of this study were to reveal the magnitude of the differences in protein structures at a cellular level as well as protein utilization and availability among soybean meal (SBM), canola meal (CM), and rapeseed meal (RSM) as feedstocks in China. Methods: Experiments were designed to compare the three different types of feedstocks in terms of: i) protein chemical profiles; ii) protein fractions partitioned according to Cornell Net Carbohydrate and Protein System; iii) protein molecular structures and protein second structures; iv) special protein compounds-amino acid (AA); v) total digestible protein and energy values; vi) in situ rumen protein degradability and intestinal digestibility. The protein second structures were measured using FT/IR molecular spectroscopy technique. A summary chemical approach in National Research Council (NRC) model was applied to analyze truly digestible protein. Results: The results showed significant differences in both protein nutritional profiles and protein structure parameters in terms of ${\alpha}-helix$, ${\beta}-sheet$ spectral intensity and their ratio, and amide I, amide II spectral intensity and their ratio among SBM, CM, and RSM. SBM had higher crude protein (CP) and AA content than CM and RSM. For dry matter (DM), SBM, and CM had a higher DM content compared with RSM (p<0.05), whereas no statistical significance was found between SBM and CM (p = 0.28). Effective degradability of CP and DM did not demonstrate significant differences among the three groups (p>0.05). Intestinal digestibility of rumen undegradable protein measured by three-step in vitro method showed that there was significant difference (p = 0.05) among SBM, CM, and RSM, which SBM was the highest and RSM was the lowest with CM in between. NRC modeling results showed that digestible CP content in SBM was significantly higher than that of CM and RSM (p<0.05). Conclusion: This study suggested that SBM and CM contained similar protein value and availability for dairy cattle, while RSM had the lowest protein quality and utilization.

Seeds as Repositories of Recombinant Proteins in Molecular Farming

  • Moloney, Maurice M.
    • 식물조직배양학회지
    • /
    • 제27권4호
    • /
    • pp.283-297
    • /
    • 2000
  • Seeds are an ideal repository for recombinant proteins in molecular farming applications. However, in order to use plant seeds efficiently for the production of such proteins, it is necessary to understand a number of fundamental biological properties of seeds. This includes a full understanding of promoters which function in a seed-specific manner, the subcellular targeting of the desired polypeptide and the final form in which a protein is stored. Once a biologically active protein has been deposited in a seed, it is also critical that the protein can be extracted and purified efficiently. In this review, these issues are examined critically to provide a number of approaches which may be adopted for production of recombinant proteins in plants. Particular attention is paid to the relationship between subcellular localization and protein extraction and purification. The robustness and flexibility of seed-based production is illustrated by examples close to or already in commercial production.

  • PDF

세균의 지방산 생합성 효소 (Enoyl-Acyl Carrier Protein Reductase, FabI)를 저해하는 새로운 항균물질의 스크리닝 (Screening of New Antibiotics Inhibiting Bacterial Enoyl-Acyl Carrier Protein Reductase (Fabl))

  • 곽진환
    • 약학회지
    • /
    • 제46권1호
    • /
    • pp.24-29
    • /
    • 2002
  • Enoyl-Acyl Carrier Protein Reductase (Fabl) of bacteria is hem as an important target for new antibacterial drugs and plays a determinant role in completing cycles of elongation in type-H fatty acid synthase system. In this study, a fabI gene from Staphylococcus aureus 6538p cloned in pET-l4b vector and FabI protein was over-produced in Escherichaia coli BL2l (DE3). $NH_2$-terminal His-tagged FabI protein was purified by nickel-nitrilotriacetic acid (Ni-NTA) metalaffinity chromatography Purified 6xHis-tagged FabI showed a catalytic activity on tram - 2 - octenoyl - N -acethlcysteamine by utilizing NADPH as a cofactor. For the discovery of new FabI inhibitors from chemical libraries, a target-oriented screening system using a 96-well plate was developed. About 10,000 chemical libraries from Korea Chemical Bank wore tested in this screening system, and 26 chemicals (0.25%) among them showed an inhibitory activity against FabI enzyme. This result showed that a new screening system can be used for the discovery of new FabI inhibitors.

Theoretical Peptide Mass Distribution in the Non-Redundant Protein Database of the NCBI

  • Lim Da-Jeong;Oh Hee-Seok;Kim Hee-Bal
    • Genomics & Informatics
    • /
    • 제4권2호
    • /
    • pp.65-70
    • /
    • 2006
  • Peptide mass mapping is the matching of experimentally generated peptides masses with the predicted masses of digested proteins contained in a database. To identify proteins by matching their constituent fragment masses to the theoretical peptide masses generated from a protein database, the peptide mass fingerprinting technique is used for the protein identification. Thus, it is important to know the theoretical mass distribution of the database. However, few researches have reported the peptide mass distribution of a database. We analyzed the peptide mass distribution of non-redundant protein sequence database in the NCBI after digestion with 15 different types of enzymes. In order to characterize the peptide mass distribution with different digestion enzymes, a power law distribution (Zipfs law) was applied to the distribution. After constructing simulated digestion of a protein database, rank-frequency plot of peptide fragments was applied to generalize a Zipfs law curve for all enzymes. As a result, our data appear to fit Zipfs law with statistically significant parameter values.

Development of Recombinant Coat Protein Antibody Based IC-RT-PCR and Comparison of its Sensitivity with Other Immunoassays for the Detection of Papaya Ringspot Virus Isolates from India

  • Sreenivasulu, M.;Gopal, D.V.R. Sai
    • The Plant Pathology Journal
    • /
    • 제26권1호
    • /
    • pp.25-31
    • /
    • 2010
  • Papaya ringspot virus (PRSV) causes the most widespread and devastating disease in papaya. Isolates of PRSV originating from different geographical regions in south India were collected and maintained on natural host papaya. The entire coat protein (CP) gene of Papaya ringspot virus-P biotype (PRSV-P) was amplified by RTPCR. The amplicon was inserted into pGEM-T vector, sequenced and sub cloned into a bacterial expression vector pRSET-A using a directional cloning strategy. The PRSV coat protein was over-expressed as a fusion protein in Escherichia coli. SDS-PAGE gel revealed that CP expressed as a ~40 kDa protein. The recombinant coat protein (rCP) fused with 6x His-tag was purified from E.coli using Ni-NTA resin. The antigenicity of the fusion protein was determined by western blot analysis using antibodies raised against purified PRSV. The purified rCP was used as an antigen to produce high titer PRSV specific polyclonal antiserum. The resulting antiserum was used to develop an immunocapture reverse transcription-polymerase chain reaction (IC-RT-PCR) assay and compared its sensitivity levels with ELISA based assays for detection of PRSV isolates. IC-RT-PCR was shown to be the most sensitive test followed by dot-blot immunobinding assay (DBIA) and plate trapped ELISA.

Succinylated Pullulan Acetate Microspheres for Protein Delivery

  • Woo, Young-Rong;Seo, Seog-Jin;Na, Kun
    • Journal of Pharmaceutical Investigation
    • /
    • 제41권6호
    • /
    • pp.323-329
    • /
    • 2011
  • In order to develop new protein carrier replacing poly(DL-lactic acid-co-glycolic acid) (PLGA) microspheres, succinylated pullulan acetate (SPA) was investigated to fabricate a long term protein delivery carrier. SPA microspheres loaded with lysozyme (Lys) as a model protein drug were prepared by a water/oil/water (W/O/W) double emulsion method. An acidity test of SPA copolymers after hydrolysis was performed to estimate the change of protein stability during releasing proteins from the microspheres. There was no pH change of SPA copolymers, but pH of PLGA polymers after hydrolysis was significantly decreased to around pH 2, indicating that the long-term stability of proteins released from SPA microspheres can be guaranteed. Loading efficiency of proteins into SPA microspheres was three times higher than those into conventional PLGA microspheres, indication of inducing stronger charge interaction between proteins and succinyl groups in SPA microspheres. Although initial burst behaviors were monitored in Lys-loaded SPA microspheres due to relatively strong hydrophilic succinyl segments in SPA microspheres, initial burst issues would be circumvented if the ratio of charge density of succinyl moieties and hydrophobic acetate groups is harmonically controlled. Therefore, in this study, a new attempt of protein delivery system was made and functional SPA was successfully confirmed as a new protein carrier.

Expression of orf7(oxi III) as dTDP-Glucose 4,6-Dehydratase Gene Cloned from Streptomyces antibioticus Tu99 and Biochemical Characteristics of Expressed Protein

  • Yoo, Jin-Cheol;Han, Ji-Man;Sohng, Jae-Kyung
    • Journal of Microbiology and Biotechnology
    • /
    • 제9권2호
    • /
    • pp.206-212
    • /
    • 1999
  • The gene orf7(oxi III) was expressed using an E. coli system in anticipation that it would encode dTDP-glucose 4,6-dehydratase which is involved in the biosynthesis of the olivose moiety of chlorothricin produced from Streptomyces antibioticus Tu99. The solubility of the expressed protein increased up to 20% under optimal induction conditions. The expressed protein was purified from the E. coli BL 21(DE3) cell lysate by a 28.5-fold purification in two chromatography steps with a 38% recovery to near homogeneity. The molecular weight and N-terminal amino acid sequence of the purified protein correlated with the predicted mass and sequence deduced from the orf7 gene. The purified protein was a homodimer with a subunit relative molecular weight of 38,000 Dalton. The expressed protein was found to exhibit dTDP-glucose 4,6-dehydratase activity and be highly specific for dTDP-glucose as a substrate. The values of K'm and V'max for dTDP-glucose were 28 $\mu$M and 295 nmol $min^{-1} (mg protein)^{-1}$, respectively. dTTP and dTDP were strong inhibitors of this enzyme.$NAD^+$, the coenzyme for dTDP-glucose 4,6-dehydratase, was tightly bound to the expressed protein.

  • PDF

Expression and Characterization of Recombinant E2 Protein of Hepatitis C Virus by Insect Cell/Baculovirus Expression System

  • Han, Bong-Kwan;Lee, Bum-Yong;Min, Mi-Kyung;Jung, Kyung-Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • 제8권4호
    • /
    • pp.361-368
    • /
    • 1998
  • The E2 protein of HCV (hepatitis C virus) is thought to have a potential role in the development of subunit vaccines and diagnostics. To express it by the insect cell/baculovirus expression (Bacu) system, we constructed a recombinant Autographa californica nuclear polyhedrosis virus (AcIL3E2), determined the most appropriate expression conditions in terms of host cell line and culture medium, and characterized the expressed HCV E2 protein. A culture system using Trichoplusia ni BTI-TN5Bl-4 cells and SF 900IISFM medium expressed a relatively high level of HCV E2 protein. It was revealed that its glycosylation properties and subcellular localization were almost the same as the ones in the mammalian cell expression system previously reported, suggesting the recombinant HCV E2 protein derived from our Bacu system can be utilized for development of a subunit vaccine and diagnostics. Interestingly, HCV E2 protein was not degraded at all even at 43 h post-heat shock in the heat shock-induced necrotic cells, probably due to its integration into the microsomal membrane, indicating that heat shock can be employed to purify HCV E2 protein.

  • PDF

FEEDING OF BYPASS PROTEIN TO CROSS BRED COWS IN INDIA ON STRAW BASED RATION

  • Kunju, P.J.G.;Mehta, A.K.;Garg, M.R.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제5권1호
    • /
    • pp.107-112
    • /
    • 1992
  • Feeding of bypass protein to lactating animals have been suggested by many research scientists as a way to increase the nutrient supply at the intestinal level thereby enhance animal production in ruminant animals. A feeding trial with a formulated bypass protein feed on straw based ration was carried out by using lactating cross bred cows at the stage of 4th month of their lactation. Bypass protein feed was fed at 5 different levels. Urea Molasses Block was used as a nitrogen source to the rumen microflora. In order to reduce the heat increment straw intake was restricted to all the animals. Urea Molasses Block intake was noticed varying in proportion with the bypass protein feed intake. Milk production was observed increasing in accordance with the level of bypass protein feed intake. However, the maximum response was noticed in cows that were fed 3 kg bypass protein feed. The nutrient availability at this stage was below the NRC (1988) requirements. Other remarkable finding was that the cows maintained the persistency of milk production even after 3rd month of lactation when the ambient temperature was $40^{\circ}C$.