• Title/Summary/Keyword: protective embankment

Search Result 2, Processing Time 0.017 seconds

Numerical investigation of the effect of impact on the rockfall protective embankment reinforced with geogrid

  • Mohammad Reza Abroshan;Majid Noorian-Bidgoli
    • Geomechanics and Engineering
    • /
    • v.33 no.4
    • /
    • pp.353-367
    • /
    • 2023
  • The construction of a protective embankment is a suitable strategy to stop and control high-energy rock blocks' impacts during the rockfall phenomenon. In this paper, based on the discrete element numerical method, by modeling an existing embankment reinforced with geogrid, its stability status under the impact of a rock block with two types of low and high kinetic energy, namely 2402 and 4180 kJ, respectively, has been investigated. The modeling results show that the use of geogrid has caused the displacement in the front and back of the embankment to decrease by more than 30%. In this case, the reinforced embankment has stopped the rock block earlier. The displacements obtained from the DEM modeling are compared with the displacements measured from an actual practical experiment to evaluate the results' validity. Comparison between the results shows that the displacement values are close together, while the maximum percentage error in previous studies by an analytical method and the finite element method was 76.4% and 36.6%, respectively. Therefore, the obtained results indicate the discrete numerical method's high ability compared to other numerical and analytical methods to simulate and design the geogrid-reinforced soil embankment under natural disasters such as rockfall with a minor error.

Study on the transient flow induced by the windbreak transition regions in a railway subject to crosswinds

  • Zheng-Wei, Chen;Syeda Anam, Hashmi;Tang-Hong, Liu;Wen-Hui, Li;Zhuang, Sun;Dong-Run, Liu;Hassan, Hemida;Hong-Kang, Liu
    • Wind and Structures
    • /
    • v.35 no.5
    • /
    • pp.309-322
    • /
    • 2022
  • Due to the complex terrain around high-speed railways, the windbreaks were established along different landforms, resulting in irregular windbreak transition regions between different subgrade infrastructures (flat ground, cutting, embankment, etc). In this paper, the effect of a windbreak transition on the wind flow around railways subjected to crosswinds was studied. Wind tunnel testing was conducted to study the wind speed change around a windbreak transition on flat ground with a uniform wind speed inflow, and the collected data were used to validate a numerical simulation based on a detached eddy simulation method. The validated numerical method was then used to investigate the effect of the windbreak transition from the flat ground to cutting (the "cutting" is a railway subgrade type formed by digging down from the original ground) for three different wind incidence angles of 90°, 75°, and 105°. The deterioration mechanism of the flow fields and the reasons behind the occurrence of the peak wind velocities were explained in detail. The results showed that for the windbreak transition on flat ground, the impact was small. For the transition from the flat ground to the cutting, the influence was relatively large. The significant increase in the wind speeds was due to the right-angle structure of the windbreak transition, which resulted in sudden changes of the wind velocity as well as the direction. In addition, the height mismatch in the transition region worsened the protective effect of a typical windbreak.