• 제목/요약/키워드: protection capacity

검색결과 587건 처리시간 0.021초

신개념 낙석방지울타리의 낙석 지지능력 평가 (Energy Absorbing Capacity for New Rockfall Protection Fence)

  • 문영종;정형조;박기준;이인원
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2003년도 가을 학술발표회 논문집
    • /
    • pp.293-298
    • /
    • 2003
  • The rockfall protection fences are installed to reduce rockfall damage in roads side slopes. The energy absorbing capacity of widely used rockfall protection fences is about 50kJ, But in many cases, rockfall protection fences are easily damaged even by a low level of rockfall energy. The objective of this paper is to verify the energy absorbing capacity of rockfall protection fences and investigate the behavior of them by rockfall. The LS-DYNA3D, a finite elements analysis program for dynamic movement of three dimensional objects, is used to perform the numerical simulations. In the result it is shown that rockfall protection fences absorb half of standard absorbing energy or less than it. It is inadquate for the rockfall protection fences to perform the principal function. To improve the performance of the fences, new rockfall proctection fence is proposed and numerical simulation is performed.

  • PDF

신개념 낙석방지울타리의 특성 및 성능평가 (Characteristics and Energy Absorbing Capacity for New Rockfall Protection Fence)

  • 문영종;정형조;박기준;이인원
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2003년도 추계 학술발표회논문집
    • /
    • pp.461-466
    • /
    • 2003
  • The rockfall protection fences are installed to reduce rockfall damage in roads side slopes. The energy absorbing capacity of widely used rockfall protection fences is about 50kJ. But in many cases, rockfall protection fences are easily damaged even by a low level of rockfall energy. The objective of this paper is to verify the energy absorbing capacity of rockfall protection fences and investigate the behavior of them by rockfall. The LS-DYNA3D, a finite elements analysis program for dynamic movement of three dimensional objects, is used to perform the numerical simulations In the result, it is shown that rockfall protection fences absorb half of standard absorbing energy or less than it. It is inadquate for the rockfall protection fences to perform the principal function. To improve the performance of the fences, new rockfall proctection fence is proposed and numerical simulation is performed.

  • PDF

Development and Performance Evaluation of the Expanded Metal Rockfall Protection Fence

  • 황영철;김범주;노흥제
    • 한국지반환경공학회 논문집
    • /
    • 제6권3호
    • /
    • pp.35-45
    • /
    • 2005
  • 낙석방지울타리는 국내에서 가장 보편적으로 사용되는 낙석방지공법의 하나로 일반적으로 H형강, 와이어메쉬 및 와이어로프의 세 부분으로 구성되며 이들에 의해 발휘되는 낙석방지울타리의 총 흡수가능에너지가 낙석에너지보다 커야한다는 것을 기본적인 설계개념으로 한다. 본 연구에서는 기존 낙석방지울타리의 와이어메쉬와 와이어로프 대신, 새로운 재료인 팽창메탈을 사용한 낙석방지울타리의 성능을 평가하고 기존의 낙석방지울타리와 비교하였다. 이를 위하여 팽창메탈 낙석방지울타리와 기존 방식의 낙석방지울타리에 대하여 실내 및 현장시험을 실시하였으며, 그 결과 팽창메탈 낙석방지울타리의 흡수가능에너지는 기존 낙석방지울타리와 비교해 높은 것으로 나타나 팽창메탈은 성능 및 경제적인 면에서 기존 재료에 비해 우수한 재료임을 보였다.

  • PDF

Capacity Design of RC Bridge Columns for Seismic Loading

  • 이재훈;고성현;최진호;신성진
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2004년도 추계 학술발표회 제16권2호
    • /
    • pp.591-594
    • /
    • 2004
  • Recently, a tendency for development of seismic approach of foreign countries is capacity design development. Capacity design is rational seismic design concept of capacity protection considering not only earthquake magnitude, but also behavior of structure. For that reason, the most bridge seismic design specifications contain capacity protection provisions explicitly or implicitly. The capacity protection is normally related with slenderness effect of the columns, force transfer in connections between columns and adjacent elements, and shear design of columns. It intends to prevent brittle failure of the structural components of bridges, so that the whole bridge system may show ductile behavior and failure during earthquake events. The objectives of this paper are to deduce needed provisions for the moderate seismicity regions such as Korea after studying current seismic design codes and to establish rational criteria provisions of seismic design for future revision of seismic design specifications.

  • PDF

접적지역 대피소 방호수준 설정에 관한 연구 (A Study on the Protective Capacity of Military Shelters in the Contact Areas)

  • 박영준;박상진;엄홍섭;손기영
    • 한국군사과학기술학회지
    • /
    • 제18권4호
    • /
    • pp.402-408
    • /
    • 2015
  • Protection against direct projectiles has been adapted just to the main command posts in the existing protective facility standards. However, protective capacity for the shelters against direct projectiles is also required because the initial survivability as well as the operation sustainment of the shelters is critical during a couple of days from outbreak of war. In this study, the Russian artillery is used to determine the existing and future threat of the North Korean Armed Forces indirectly. And then, required protective capacity of military shelters in the contact areas is calculated along with UFC 3-340-02 and it is verified using modeling and simulation. Based on the assessed capacity, actual inspect of military facilities with contact areas on spot is performed whether military shelters have enough protection capacity against determined threats. According to the field study, it is verified that proper earth bermed shelter has enough protection capacity. The results in this study could be used how to retrofit the current shelters in the contact areas.

보강재에 따른 방호패널의 에너지 소산능력에 대한 실험적 연구 (An Experimental Study on Energy Dissipation Capacity of protection according to the reinforcement panel)

  • 이예찬;김규용;석원균;최병철;사수이;남정수
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2022년도 봄 학술논문 발표대회
    • /
    • pp.113-114
    • /
    • 2022
  • The purpose of this study is to identify the rear energy transfer amount and time delay capability of the protection panel that has been impated by a projectile and the protection panel reinforced the foam polypropylene on the rear of the fiber reinforced cement itious composites, and compared and analyzed the load resistance capacity, energy dissipation capacity, and impact delay capacity when dynamic extreme load were applied to the specimen.

  • PDF

사면에서 발생하는 낙석에너지와 낙석방지울타리 적용성에 관한 연구 (A Study on Rockfall Energy and Rockfall Protection Fence Applications on the Slope)

  • 김남호;신윤섭;박윤재;조종석
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2002년도 봄 학술발표회 논문집
    • /
    • pp.523-530
    • /
    • 2002
  • Recently, while rockfall occurs very frequently, a lot of researches on the rockfall protection fence Is in process. But the rockfall protection fence has been installed unrelated to slope characteristics, rockfall shape and rockfall height. Therefore, in this study we suggested the effective protection fence model considering about rockfall energy and energy absorbing capacity and we verified the model by field test. According to these results, it is more reasonable to evaluate rockfall energy based on the results of simulation program, which can be consider effects of energy decrease, than use the simplified method proposed by Japanese road association. And rockfall energy is affected by the size of supports and wire rope and the space of supports. As the results of comparing rockfall energy with energy absorbing capacity, type$\circled1$(the space of supports is changed to 3.0m)can be available for generally expected rockfall except the rock slope over 30m heights. But rockfall protection fence installed at the field, it should be partially reinforced after consideration of slope particularities and construction conditions.

  • PDF

대용량 이차전지 보호 시스템용 전류 감지 동작형 보호소자의 저융점 금속 가용체 설계 (Design of Low-Melting Metal Fuse Elements of Current Sensing Type Protection Device for Large Capacity Secondary Battery Protection System)

  • 김은민;강창룡
    • 한국전기전자재료학회논문지
    • /
    • 제31권6호
    • /
    • pp.427-432
    • /
    • 2018
  • High-capacity secondary batteries can cause explosion hazards owing to microcurrent variations or current surges that occur in short circuits. Consequently, complete safety cannot be achieved with general protection that is limited to a mere current fuse. Hence, in the case of secondary batteries, it is necessary for the protector to limit the inrush current in a short circuit, and to detect the current during microcurrent variations. To serve this purpose, a fuse can be employed for the secondary battery protection circuit with current detection. This study aims at designing a protection device that can stably operate in the hazardous circumstances associated with high-capacity secondary batteries. To achieve the said objective, a detecting fuse was designed from an alloy of low melting point elements for securing stability in abnormal current states. Experimental results show that the operating I-T and V-T characteristic constraints can be satisfied by employing the proposed current detecting self-contained low melting point fuse, and through the resistance of the heating resistor. These results thus verify that the proposed protection device can prevent the hazards of short circuit current surges and microcurrent variations of secondary batteries.

Nonlinear Buckling Analysis of H-Type Honeycombed Composite Column with Rectangular Concrete-Filled Steel Tube Flanges

  • Ji, Jing;Xu, Zhichao;Jiang, Liangqin;Yuan, Chaoqing;Zhang, Yunfeng;Zhou, Lijian;Zhang, Shilong
    • 국제강구조저널
    • /
    • 제18권4호
    • /
    • pp.1153-1166
    • /
    • 2018
  • This paper was concerned with the nonlinear analysis on the overall stability of H-type honeycombed composite column with rectangular concrete-filled steel tube flanges (STHCC). The nonlinear analysis was performed using ABAQUS, a commercially available finite element (FE) program. Nonlinear buckling analysis was carried out by inducing the first buckling mode shape of the hinged column to the model as the initial imperfection with imperfection amplitude value of L/1000 and importing the simplified constitutive model of steel and nonlinear constitutive model of concrete considering hoop effect. Close agreement was shown between the experimental results of 17 concrete-filled steel tube (CFST) specimens and 4 I-beams with top flanges of rectangular concrete-filled steel tube (CFSFB) specimens conducted by former researchers and the predicted results, verifying the correctness of the method of FE analysis. Then, the FE models of 30 STHCC columns were established to investigate the influences of the concrete strength grade, the nominal slenderness ratio, the hoop coefficient and the flange width on the nonlinear stability capacity of SHTCC column. It was found that the hoop coefficient and the nominal slenderness ratio affected the nonlinear stability capacity more significantly. Based on the results of parameter analysis, a formula was proposed to predict the nonlinear stability capacity of STHCC column which laid the foundation of the application of STHCC column in practical engineering.

콘크리트에 표면매립보강된 FRP의 내화단열방법에 따른 부착성능 (Bond Capacity of Near-Surface-Mounted FRP in Concrete Corresponding to Fire-Protection Method)

  • 임종욱;김태완;서수연
    • 대한건축학회논문집:구조계
    • /
    • 제35권1호
    • /
    • pp.3-10
    • /
    • 2019
  • The purpose of this paper is to find the fire-protection method for keeping on the bond capacity of Near-Surface-Mounted (NSM) FRP under high temperature. Experiments have been carried out to evaluate the bond capacity of NSM FRP by using CFRP-plates and to confirm the heat transfer to the concrete block when the refractory insulation is attached to the surface of NSM FRP. Bond test of NSM FRP under room temperature was conducted to obtain the maximum bond strength. And then a heating tests were carried out with keeping the bond stress of 30% of the maximum bond strength. As a result, the bond capacity of NSM FRP was disappeared when the temperature at epoxy reached to its glass transition temperature (GTT). In order to secure the bond capacity of the NSM FRP, it is necessary to protect the front as well as side by using insulation materials.