• Title/Summary/Keyword: protected species

Search Result 492, Processing Time 0.028 seconds

Protective Effect of Phragmitis Rhizoma against Oxidative Stress-induced DNA Damage and Apoptosis in Chang Liver Cells (산화적 스트레스에 의한 간세포의 DNA 손상 및 apoptosis 유도에 대한 노근 추출물의 보호 효과)

  • Lee, Hui yeong;Hong, Sang hoon;Park, Sang eun
    • The Journal of Internal Korean Medicine
    • /
    • v.42 no.6
    • /
    • pp.1269-1284
    • /
    • 2021
  • Objectives: Phragmitis Rhizoma is the fresh or dried rhizome of Phragmites communis Trin., which has been prescribed in traditional Korean medicine to relieve fever and vomiting and to nourish the body fluids. Recently, the protective effect of Phragmitis Rhizoma extract or its components on myelotoxicity and inflammatory responses have been reported, but no study has yet been conducted on oxidative stress. Methods: The present study investigated whether an ethanol extract of Phragmitis Rhizoma (PR) could protect against cellular damage induced by oxidative stress in Chang liver cells. Results: Pretreatment with PR significantly suppressed the hydrogen peroxide (H2O2)-induced reduction of Chang cell viability and generation of reactive oxygen species (ROS), thereby deferring apoptosis. PR also markedly inhibited H2O2-induced comet tail formation and phospho-γH2AX expression, suggesting that PR protected against oxidative stress-mediated DNA damage. PR also effectively prevented the inhibition of ATP synthesis in H2O2-treated Chang cells by inhibiting the loss of mitochondrial membrane potential, indicating that PR maintains energy metabolism through preservation of mitochondrial function while eliminating ROS generated by H2O2. Immunoblotting results indicated that PR attenuated the H2O2-induced downregulation of Bcl-2 and upregulation of Bax expression. Conclusions: PR protects against oxidative injury in Chang liver cells by regulating energy homeostasis via ROS generation blockade, which is at least partly mediated through inactivation of the mitochondria-mediated apoptosis pathway.

Inhibition of Human Periodontal Stem Cell Death Following the Antioxidant Action of Celecoxib (Celecoxib의 항산화 작용에 따른 성체 치주인대 줄기세포 사멸억제)

  • Kyung-Hee Lee
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.11 no.2
    • /
    • pp.169-179
    • /
    • 2023
  • Purpose : Although human periodontal ligament stem cells (hPDLSCs) are a supportive factor for tissue engineering, oxidative stress during cell culture and transplantation has been shown to affect stem cell viability and mortality, leading to failed regeneration. The aim of this study was to evaluate the antioxidant and protective effects against cell damage of celecoxib, a selective cyclooxygenase-2 (COX-2) inhibitor, and the antioxidant signal of hPDLSCs in H2O2-induced oxidative stress. Methods : To induce oxidative stress in cultured hPDLSCs, H2O2 was used as an exogenous reactive oxygen species (ROS). Dose-dependent celecoxib (.1, 1, 10, or 100 µM) was administered after H2O2 treatment. WST-1 assay was used to assess cell damage and western blot was used to observe antioxidant activity of hPDLSCs in oxidative stress. Immunohistochemistry was performed for inverting the localization of the SOD and Nrf2 antibody. Results : We found that progressive cell death was induced in hPDLSCs by H2O2 treatment. However, low-dose celecoxib reduced H2O2-induced cellular damage and eventually enhanced the SOD activity and Nrf2 signal of hPDLSCs. Oxidative stress-induced morphological change in hPDLSCs included lowered the survival and number of spindle-shaped cells, and shrinkage and shortening of cell fibers. Notably, celecoxib promoted cell survival function and activated antioxidants such as SOD and Nrf2 by positively regulating the cell survival signal pathway, and also reduced the number of morphological changes in hPDLS. Immunohistochemistry results showed a greater number of SOD- and Nrf2-stained cells in the celecoxib-treated group following oxidative stress. Conclusion : By increasing SOD and Nrf2 expression at the antioxidant system, the findings suggest that celecoxib enhanced the antioxidative ability of hPDLSCs and protected cell viability against H2O2-induced oxidative stress by increasing SOD and Nrf2 expression in the antioxidant system.

Biological soil crusts impress vegetation patches and fertile islands over an arid pediment, Iran

  • Sepehr, Adel;Hosseini, Asma;Naseri, Kamal;Gholamhosseinian, Atoosa
    • Journal of Ecology and Environment
    • /
    • v.46 no.1
    • /
    • pp.31-40
    • /
    • 2022
  • Background: Plant vegetation appears in heterogeneous and patchy forms in arid and semi-arid regions. In these regions, underneath the plant patches and the empty spaces between them are covered by biological soil crusts (moss, lichen, cyanobacteria, and fungi). Biological soil crusts lead to the formation and development of fertile islands in between vegetation patches via nitrogen and carbon fixation and the permeation of runoff water and nutrients in the soil. Results: The present study has investigated the association of biological soil crusts, the development of fertile islands, and the formation of plant patches in part of the Takht-e Soltan protected area, located in Khorasan Razavi Province, Iran. Three sites were randomly selected as the working units and differentiated based on their geomorphological characteristics to the alluvial fan, hillslope, and fluvial terrace landforms. Two-step systematic random sampling was conducted along a 100-meter transect using a 5 m2 plot at a 0-5 cm depth in three repetitions. Fifteen samplings were carried out at each site with a total of 45 samples taken. The results showed that the difference in altitude has a significant relationship with species diversity and decreases with decreasing altitude. Results have revealed that the moisture content of the site, with biocrust has had a considerable increase compared to the other sites, helping to form vegetation patterns and fertile islands. Conclusions: The findings indicated that biological crusts had impacted the allocation of soil parameters. They affect the formation of plant patches by increasing the soil's organic carbon, nitrogen, moisture and nutrient content provide a suitable space for plant growth by increasing the soil fertility in the inter-patch space.

A Novel Role of Hyaluronic Acid and Proteoglycan Link Protein 1 (HAPLN1) in Delaying Vascular Endothelial Cell Senescence

  • Dan Zhou;Ji Min Jang;Goowon Yang;Hae Chan Ha;Zhicheng Fu;Dae Kyong Kim
    • Biomolecules & Therapeutics
    • /
    • v.31 no.6
    • /
    • pp.629-639
    • /
    • 2023
  • Cardiovascular diseases (CVDs) are the most common cardiovascular system disorders. Cellular senescence is a key mechanism associated with dysfunction of aged vascular endothelium. Hyaluronic acid and proteoglycan link protein 1 (HAPLN1) has been known to non-covalently link hyaluronic acid (HA) and proteoglycans (PGs), and forms and stabilizes HAPLN1-containing aggregates as a major component of extracellular matrix. Our previous study showed that serum levels of HAPLN1 decrease with aging. Here, we found that the HAPLN1 gene expression was reduced in senescent human umbilical vein endothelial cells (HUVECs). Moreover, a recombinant human HAPLN1 (rhHAPLN1) decreased the activity of senescence-associated β-gal and inhibited the production of senescence-associated secretory phenotypes, including IL-1β, CCL2, and IL-6. rhHAPLN1 also downregulated IL-17A levels, which is known to play a key role in vascular endothelial senescence. In addition, rhHAPLN1 protected senescent HUVECs from oxidative stress by reducing cellular reactive oxygen species levels, thus promoting the function and survival of HUVECs and leading to cellular proliferation, migration, and angiogenesis. We also found that rhHAPLN1 not only increases the sirtuin 1 (SIRT1) levels, but also reduces the cellular senescence markers levels, such as p53, p21, and p16. Taken together, our data indicate that rhHAPLN1 delays or inhibits the endothelial senescence induced by various aging factors, such as replicative, IL-17A, and oxidative stress-induced senescence, thus suggesting that rhHAPLN1 may be a promising therapeutic for CVD and atherosclerosis.

Seed Morphological Characteristics and Dormancy type of Eranthis stellata Maxim., Korea Rare Plant. (희귀식물 너도바람꽃(Eranthis stellata Maxim.) 종자의 형태특성 및 휴면유형 분석)

  • Inhwan Chae;Geon Hui Ryu;Se-kyu Song;Jin-Woo Kim;Gi Ho Kang;Hayan Lee
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2020.08a
    • /
    • pp.20-20
    • /
    • 2020
  • Eranthis stellata Maxim. is a perennial plant that grows around the valley. E. stellata is concerned about the decline in natural habitats due to climate change in KOREA, continues to be observed and protected as an endangered species (Least Concrned, LC). Nevertheless, studies on the characteristics of the seeds of E. stellata are insufficient. So, this study analyzed the morphological characteristics and dormancy types of seeds. Seeds of E. stellata was collected in April at Gyeongsangbuk-do Arboretum and kept at 5 ℃ until using. To investigate the morphology of seeds, an optical microscope and a scanning electron microscope (SEM) were used. GA3 treated or untreated seeds (4 replicates of 25 seeds each) were observed germination and embryo growth for 1 month at 5 ℃ and 25/15 ℃ (12h day/12h night). The seed surface of E. stellata, light brown, was observed as a common characteristic of Eranthis genus, reticulate. The short axis of seeds was 1.11~1.77mm (average 1.44mm), and the long axis was 1.27~1.91mm (average 1.63mm), which was investigated in a slightly round shape (subglose). While no germination was observed at all conditions, Embryo growth was observed at 5 ℃ both in the control group and with GA3treated groups. Thus, seeds of E. stellata are classified as morphological physiological dormancy (MDP), which requires embryonic development and dormant break at the same time. These results can be useful information for determining morphological physiological seed dormancy and germination, and will be an important basic data for seed propagation of E. stellata as a resource.

  • PDF

Ginseng root-derived exosome-like nanoparticles protect skin from UV irradiation and oxidative stress by suppressing activator protein-1 signaling and limiting the generation of reactive oxygen species

  • Wooram Choi;Jeong Hun Cho;Sang Hee Park;Dong Seon Kim;Hwa Pyoung Lee;Donghyun Kim;Hyun Soo Kim;Ji Hye Kim;Jae Youl Cho
    • Journal of Ginseng Research
    • /
    • v.48 no.2
    • /
    • pp.211-219
    • /
    • 2024
  • Background: Recently, plant-derived exosome-like nanoparticles (PDENs) have been isolated, and active research was focusing on understanding their properties and functions. In this study, the characteristics and molecular properties of ginseng root-derived exosome-like nanoparticles (GrDENs) were examined in terms of skin protection. Methods: HPLC-MS protocols were used to analyze the ginsenoside contents in GrDENs. To investigate the beneficial effect of GrDENs on skin, HaCaT cells were pre-treated with GrDENs (0-2 × 109 particles/mL), and followed by UVB irradiation or H2O2 exposure. In addition, the antioxidant activity of GrDENs was measured using a fluorescence microscope or flow cytometry. Finally, molecular mechanisms were examined with immunoblotting analysis. Results: GrDENs contained detectable levels of ginsenosides (Re, Rg1, Rb1, Rf, Rg2 (S), Gyp17, Rd, C-Mc1, C-O, and F2). In UVB-irradiated HaCaT cells, GrDENs protected cells from death and reduced ROS production. GrDENs downregulated the mRNA expression of proapoptotic genes, including BAX, caspase-1, -3, -6, -7, and -8 and the ratio of cleaved caspase-8, -9, and -3 in a dose-dependent manner. In addition, GrDENs reduced the mRNA levels of aging-related genes (MMP2 and 3), proinflammatory genes (COX-2 and IL-6), and cellular senescence biomarker p21, possibly by suppressing activator protein-1 signaling. Conclusions: This study demonstrates the protective effects of GrDENs against skin damage caused by UV and oxidative stress, providing new insights into beneficial uses of ginseng. In particular, our results suggest GrDENs as a potential active ingredient in cosmeceuticals to promote skin health.

Analysis of Sustainable Management Factors in County Parks Based on the Sustainability Evaluation Framework of Korea Nature Parks - Focus on the 11 County Parks in Gyeongsangnam-do - (자연공원 지속가능성평가에 기반한 군립공원 지속가능성 영향요인 분석 - 경남권역 11개소 군립공원을 대상으로 -)

  • Hong, Sukhwan;Ahn, Rosa;Tian, Wanting;Heo, Hagyoung;Pak, Junhou
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.48 no.3
    • /
    • pp.12-21
    • /
    • 2020
  • This study aims to implement the Sustainability Evaluation Framework of Korea Natural Parks to county parks in Gyeongsangnam-do, and to review the performance status of management effectiveness evaluation (MEE) and identify factors that influence the improvement of management effectiveness in protected areas. County park officers evaluated current management using this framework that was developed based on the MEE framework designed by the Korean Ministry of Environment. Among the principal values of county parks, 'natural and ecological' is indicated as the most important, followed by 'cultural and historic value' and 'leisure and recreation'. Natural disasters and climate change, visitor impact-inappropriate visitor behavior are indicated as current threats, and three county parks administrators viewed that there was no particular threat to their park. According to MEE results, the most effective management fields were 'State of cultural and historic value', 'State of leisure and recreational value', 'Current state of principal value'. The comparatively weaker fields were 'Threatened species management', 'Invasive species management', 'Management monitoring and evaluation'. The effects of sustainable management on county parks were analyzed through a regression analysis, and the influence of management factors reveal 'Annual budget', will impact attaining higher management scores. This study presents the current management information about county parks and provides support for the basis for the planning of county parks in Korea, suggesting the influencing factor.

Predicting Potential Habitat for Hanabusaya Asiatica in the North and South Korean Border Region Using MaxEnt (MaxEnt 모형 분석을 통한 남북한 접경지역의 금강초롱꽃 자생가능지 예측)

  • Sung, Chan Yong;Shin, Hyun-Tak;Choi, Song-Hyun;Song, Hong-Seon
    • Korean Journal of Environment and Ecology
    • /
    • v.32 no.5
    • /
    • pp.469-477
    • /
    • 2018
  • Hanabusaya asiatica is an endemic species whose distribution is limited in the mid-eastern part of the Korean peninsula. Due to its narrow range and small population, it is necessary to protect its habitats by identifying it as Key Biodiversity Areas (KBAs) adopted by the International Union for Conservation of Nature (IUCN). In this paper, we estimated potential natural habitats for H. asiatica using maximum entropy model (MaxEnt) and identified candidate sites for KBA based on the model results. MaxEnt is a machine learning algorithm that can predict habitats for species of interest unbiasedly with presence-only data. This property is particularly useful for the study area where data collection via a field survey is unavailable. We trained MaxEnt using 38 locations of H. asiatica and 11 environmental variables that measured climate, topography, and vegetation status of the study area which encompassed all locations of the border region between South and North Korea. Results showed that the potential habitats where the occurrence probabilities of H. asiatica exceeded 0.5 were $778km^2$, and the KBA candidate area identified by taking into account existing protected areas was $1,321km^2$. Of 11 environmental variables, elevation, annual average precipitation, average precipitation in growing seasons, and the average temperature in the coldest month had impacts on habitat selection, indicating that H. asiatica prefers cool regions at a relatively high elevation. These results can be used not only for identifying KBAs but also for the reference to a protection plan for H. asiatica in preparation of Korean reunification and climate change.

Population Structure and Fine-scale Habitat Affinity of Cymbidium kanran Protected Area as a Natural Monument (천연기념물 한란 보호구역의 개체군 구조 및 미세 서식처 선호성)

  • Shin, Jae-Kwon;Koo, Bon-Youl;Kim, Han-Gyeoul;Kwon, He-Jin;Son, Sung-Won;Lee, Jong-Seok;Cho, Hyun-Je;Bae, Kwan-Ho;Cho, Young-Chan
    • Korean Journal of Ecology and Environment
    • /
    • v.47 no.3
    • /
    • pp.176-185
    • /
    • 2014
  • There are no population ecological research on the natural monument (No. 191) Jeju Cymbidium kanran in South Korea. In this study, we analyzed the population structure and fine-scale habitat affinity of C. kanran in Sanghyo-dong, Jejudo Island from Oct. 2013 to Feb. 2014. We observed total of 1,237 individuals (4,341 pseudobulbs) of C. kanran (989.6 population $ha^{-1}$) within (1.25 ha) and only 17 (1.4%) individuals were inflorescent. In 60.9% of the entire populations, disease symptoms such as spots and blight leaves were observed. C. kanran populaton exhibited reverse-J shaped size distribution based on leaf area classes as individual size parameter. The three size related attributes of C. kanran (no. of pseudobulb $r_s$=-0.159, no. of leaves $r_s$=-0.148 and leaf arera $r_s$=-0.114) and soil temperature revealed a negative relationship (p<0.0001). Most of C. kanran (95.4%) were grown under Castamopsis cuspidata and spatially, C. kanran were strongly clumped at all distances. Population characteristics of C. kanran in the study area were likely originated from species habitat affinity and successional environment. Through this study, base line data for C. kanran's habitat monitoring was established and conservation measures based on population characteristics were discussed.

The Ecological Values of the Korean Demilitarized Zone(DMZ) and International Natural Protected Areas (비무장지대(DMZ)의 생태적 가치와 국제자연보호지역)

  • Cho, Do-soon
    • Korean Journal of Heritage: History & Science
    • /
    • v.52 no.1
    • /
    • pp.272-287
    • /
    • 2019
  • The Korean Demilitarized Zone (DMZ) was established in 1953 by the Korean War Armistice Agreement. It extends from the estuary of the Imjin River, in the west, to the coast of the East Sea. It is 4 km in width and 148 km in length. However, the ecosystems of the civilian control zone (CCZ) located between the southern border of the DMZ and the civilian control line (CCL) and the CCZ in the estuary of the Han River and the Yellow Sea are similar to those in the DMZ, and, therefore, the ecosystems of the DMZ and the CCZ are collectively known as the "ecosystems of the DMZ and its vicinities." The flora in the DMZ and its vicinities is composed of 1,864 species, which accounts for about 42% of all the vascular plant species on the Korean Peninsula and its affiliated islands. Conducting a detailed survey on the vegetation, flora, and fauna in the DMZ is almost impossible due to the presence of landmines and limitations on the time allowed to be spent in the DMZ. However, to assess the environmental impact of the Munsan-Gaesong railroad reconstruction project, it was possible to undertake a limited vegetation survey within the DMZ in 2001. The vegetation in Jangdan-myeon, in Paju City within the DMZ, was very simple. It was mostly secondary forests dominated by oaks such as Quercus mongolica, Q. acutissima, and Q. variabilis. The other half of the DMZ in Jangdan-myeon was occupied by grassland composed of tall grasses such as Miscanthus sinensis, M. sacchariflorus, and Phragmites japonica. Contrary to the expectation that the DMZ may be covered with pristine mature forests due to more than 60 years of no human interference, the vegetation in the DMZ was composed of simple secondary forests and grasslands formed on former rice paddies and agricultural fields. At present, the only legal protection system planned for the DMZ is the Natural Environment Conservation Act, which ensures that the DMZ would be managed as a nature reserve for only two years following Korean reunification. Therefore, firstly, the DMZ should be designated as a site of domestic legally protected areas such as nature reserve (natural monument), scenic site, national park, etc. In addition, we need to try to designate the DMZ as a UNESCO Biosphere Reserve or as a World Heritage site, or as a Ramsar international wetland for international cooperation. For nomination as a world heritage site, we can emphasize the ecological and landscape value of the wetlands converted from the former rice paddies and the secondary forests maintained by frequent fires initiated by military activities. If the two Koreas unexpectedly reunite without any measures in place for the protection of nature in the DMZ, the conditions prior to the Korean War, such as rice paddies and villages, will return. In order to maintain the current condition of the ecosystems in the DMZ, we have to discuss and prepare for measures including the retention of mines and barbed-wire fences, the construction of roads and railroads in the form of tunnels or bridges, and the maintenance of the current fire regime in the DMZ.