• Title/Summary/Keyword: protected concrete

Search Result 73, Processing Time 0.03 seconds

Analysis on Durability Performance Enhancement and Economical Efficiency through Chloride Protection for Concrete Structures (콘크리트 구조물의 염해도장을 통한 내구성능 향상 및 경제적 효과분석)

  • Chai, Won-Kyu;Kim, Seong-Heon;Son, Young-Hyun;Park, Ju-Won;Lee, Cheung-Bin
    • Journal of the Korean Society of Safety
    • /
    • v.25 no.6
    • /
    • pp.155-160
    • /
    • 2010
  • In this study, detailed assessment for durability performance were performed on the chloride protected concrete structures to investigate the effectiveness of chloride protection. And economical efficiency for the chloride protected concrete structures were studied by LCC(Life Cycle Cost) analysis. In the comparison result of the first section repair time, it was found that the chloride protected concrete structures was economical better than the non-protected concrete structures in the long term. According to the analysis result of the accumulated chloride concentration by used time and chloride ion concentration by depth, it can be seen that the permeation through time from chloride has increased two times in the chloride protected concrete structures.

Finite element modeling for structure-soil interaction analysis of plastic greenhouse foundation (온실기초의 구조물-지반 상호작용 해석을 위한 유한요소 모델링)

  • Ryu, Hee-Ryong;Cho, Myeong-Whan;Yu, In-Ho;Moon, Doo-Gyung
    • Korean Journal of Agricultural Science
    • /
    • v.41 no.4
    • /
    • pp.455-460
    • /
    • 2014
  • In this study, structural behavior of plastic greenhouse foundation was investigated using rational finite element modeling for structures which have different material properties each other. Because the concrete foundation of plastic greenhouse and soil which surround and support the concrete foundation have very different material property, the boundary between two structures were modeled by a interface element. The interface element was able to represent sliding, separation, uplift and re-bonding of the boundary between concrete foundation and soil. The results of static and dynamic analysis showed that horizontal and vertical displacement of concrete foundation displayed a decreasing tendency with increasing depth of foundation. The second frequency from modal analysis of structure including foundation and soil was estimate to closely related with wind load.

Performance of Concrete in Aggressive Environment

  • Aguiar, Jose B.;Camoes, Aires;Moreira, Pedro M.
    • International Journal of Concrete Structures and Materials
    • /
    • v.2 no.1
    • /
    • pp.21-25
    • /
    • 2008
  • Surface treatments act as a barrier between the environment and the concrete, preventing or retarding the entry of harmful substances and cutting off the transportation path into concrete. The effectiveness of a surface protection preventing the permeation depends on how close and strongly connected are the resin molecules. This work intends to contribute to a better understanding of the performance of protected concrete in chemically aggressive environments, by presenting results of ion diffusion and resistance to aggressive solutions of several hydrophobic agents and coatings used to protect concrete. Three different types of surface protections were tested: silicone hydrophobic agent, acrylic and epoxy coatings. The obtained results indicate that the overall performance of epoxy resin was better than the other selected types of protections.

Development of Crash Protected Memory for Event Recorder (Event Recorder를 위한 Crash Protected Memory 개발)

  • Song, Gyu-Youn;Lee, Sang-Nam;Ryu, Hee-Moon
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.1068-1074
    • /
    • 2010
  • In high speed railway, event recorder is essential system for analyzing the cause of train accident. It stores train operation sent by train control system in safe memory unit. Crash protected memory, the safe memory unit for event recorder, keeps the stored contents from severe environment. For crash protected memory, we have designed the architecture of concrete enclosure and controller board. Proposed system provides large volume of memory capacity and fault tolerance architecture. For checking the characteristics of proposed crash protected memory specification, the simulation is executed. Simulation results shows the designed crash protected memory meets all requirements.

  • PDF

Finite element study on composite slab-beam systems under various fire exposures

  • Cirpici, Burak K.;Orhan, Suleyman N.;Kotan, Turkay
    • Steel and Composite Structures
    • /
    • v.37 no.5
    • /
    • pp.589-603
    • /
    • 2020
  • This paper presents an investigation of the thermal performance of composite floor slabs with profiled steel decking exposed to fire effects from floor. A detailed finite-element model has been developed by representing the concrete slab with steel decking under of it and steel beam both steel parts protected by intumescent coating. Although this type of floor systems offers a better fire resistance, passive fire protection materials should be applied when a higher fire resistance is desired. Moreover, fire exposed side is so crucial for composite slab systems as the total fire behaviour of the floor system changes dramatically. When the fire attack from steel parts, the temperature rises rapidly resulting in a sudden decrease on the strength of the beam and decking. Herein this paper, the fire attack side is assumed from the face of the concrete floor (top of the concrete assembly). Therefore, the heat is transferred through concrete to the steel decking and reaching finally to the steel beam both protected by intumescent coating. In this work, the numerical model has been established to predict the heat transfer performance including material properties such as thermal conductivity, specific heat and dry film thickness of intumescent coating. The developed numerical model has been divided into different layers to understand the sensitivity of steel temperature to the number of layers of intumescent coating. Results show that the protected composite floors offer a higher fire resistance as the temperature of the steel section remains below 60℃ even after 60-minute Standard (ISO) fire and Fast fire exposure. Obtaining lower temperatures in steel due to the great fire performance of the concrete itself results in lesser reductions of strength and stiffness hence, lesser deflections.

Factors governing dynamic response of steel-foam ceramic protected RC slabs under blast loads

  • Hou, Xiaomeng;Liu, Kunyu;Cao, Shaojun;Rong, Qin
    • Steel and Composite Structures
    • /
    • v.33 no.3
    • /
    • pp.333-346
    • /
    • 2019
  • Foam ceramic materials contribute to the explosion effect weakening on concrete structures, due to the corresponding excellent energy absorption ability. The blast resistance of concrete members could be improved through steel-foam ceramics as protective cladding layers. An approach for the modeling of dynamic response of steel-foam ceramic protected reinforced concrete (Steel-FC-RC) slabs under blast loading was presented with the LS-DYNA software. The orthogonal analysis (five factors with five levels) under three degrees of blast loads was conducted. The influence rankings and trend laws were further analyzed. The dynamic displacement of the slab bottom was significantly reduced by increasing the thickness of steel plate, foam ceramic and RC slab, while the displacement decreased slightly as the steel yield strength and the compressive strength of concrete increased. However, the optimized efficiency of blast resistance decreases with factors increase to higher level. Moreover, an efficient design method was reported based on the orthogonal analysis.

Establishment of Additional Protected Areas and Applying Payment for Ecosystem Services(PES) for Sustainability of Suncheonman-Bay (지속가능한 순천만을 위한 보호지역 확대와 정책적 활용을 위한 생태계 서비스 지불제(PES)의 적용)

  • Mo, Yongwon;Park, Jin Han;Son, Yong-Hoon;Lee, Dong Kun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.19 no.1
    • /
    • pp.171-184
    • /
    • 2016
  • Suncheonman-Bay and its surrounding areas play important roles as habitats for migratory birds. However, sustainable management of these areas is difficult because of the development pressure of private lands. Therefore, the areas surrounding Suncheonman-Bay must be classified as additional protected areas; for this, it is necessary to gather concrete and objective evidence and ensure protected area management. Further, compensation measures must be considered when acquiring a private property as an additional protected area. In this study, we distinguish protected areas, such as core, buffer, and transition areas, within a private area by using data from the Winter Waterbird Census of Korea and MARXAN software, a spatial conservation prioritization tool. We applied ecosystem services to apply Payment for Ecosystem services (PES) as compensation measures. Watershed conservation (supply), climate control (regulation), supporting habitats (support), and recreation (culture) etc. were evaluated by calculating the economic value of these ecosystem services. Eastern, western, and northern forests and rice fields of Suncheonman-Bay were shown to have a number of core areas for the preservation of endangered species. The ecosystem service value of the additional protected areas was estimated at 17.5 million KRW/ha/year. We believe that our study result could be used to establish protected areas to preserve major habitats, as well as include areas adjacent to such major habitats that play a vital role in endangered species conservation. In addition, through this study, we highlight the need for an objective basis to establish protected areas.

Concrete pavement monitoring with PPP-BOTDA distributed strain and crack sensors

  • Bao, Yi;Tang, Fujian;Chen, Yizheng;Meng, Weina;Huang, Ying;Chen, Genda
    • Smart Structures and Systems
    • /
    • v.18 no.3
    • /
    • pp.405-423
    • /
    • 2016
  • In this study, the feasibility of using telecommunication single-mode optical fiber (SMF) as a distributed fiber optic strain and crack sensor was evaluated in concrete pavement monitoring. Tensile tests on various sensors indicated that the $SMF-28e^+$ fiber revealed linear elastic behavior to rupture at approximately 26 N load and 2.6% strain. Six full-scale concrete panels were prepared and tested under truck and three-point loads to quantify the performance of sensors with pulse pre-pump Brillouin optical time domain analysis (PPP-BOTDA). The sensors were protected by precast mortar from brutal action during concrete casting. Once air-cured for 2 hours after initial setting, half a mortar cylinder of 12 mm in diameter ensured that the protected sensors remained functional during and after concrete casting. The strains measured from PPP-BOTDA with a sensitivity coefficient of $5.43{\times}10^{-5}GHz/{\mu}{\varepsilon}$ were validated locally by commercial fiber Bragg grating (FBG) sensors. Unlike the point FBG sensors, the distributed PPP-BOTDA sensors can be utilized to effectively locate multiple cracks. Depending on their layout, the distributed sensors can provide one- or two-dimensional strain fields in pavement panels. The width of both micro and major cracks can be linearly related to the peak strain directly measured with the distributed fiber optic sensor.

Numerical analysis of partially fire protected composite slabs

  • Zaharia, R.;Vulcu, C.;Vassart, O.;Gernay, T.;Franssen, J.M.
    • Steel and Composite Structures
    • /
    • v.14 no.1
    • /
    • pp.21-39
    • /
    • 2013
  • The paper presents a numerical investigation, done with the computer program SAFIR, in order to obtain simpler finite element models for representing the behaviour of the partially protected composite steel concrete slabs in fire situations, considering the membrane action. Appropriate understanding and modelling of the particular behaviour of composite slabs allows a safe approach, but also substantial savings on the thermal insulation that has to be applied on the underlying steel structure. The influence of some critical parameters on the behaviour and fire resistance of composite slabs such as the amount of reinforcing steel, the thickness of the slab and the edge conditions is also highlighted. The results of the numerical analyses are compared with the results of three full scale fire tests on composite slabs that have been performed in recent years.

Properties of Fire Resistance of High Performance Concrete Using Cellulose Fiber (셀룰로오스 섬유를 사용하는 고성능 콘크리트의 내화특성)

  • Kim Kyoung Min;Joo Eun Hi;Hwang Yin Seong;Jee Suk Won;Lee Seong Yeun;Han Cheon Goo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.557-560
    • /
    • 2004
  • This paper is to investigate the fire endurance of high performance concrete with the contents of cellulose fiber. According to test results, the use of CL lead to decrease in fluidity. For compressive strength, the use of CL had no influence on compressive strength. For spalling properties, plain concrete showed a severe spalling failure. The use of CL protected from spalling of concrete, but most specimens had scale failure and partial destruction of specimens. This is due to the insufficient fiber length and diameter of CL fiber, which was unable to discharging the internal vapour pressure. For this reason, CL fiber can not be used to protect from spalling oh high performance concrete. Residual strength was observed to $5\~7\%$ of original strength.

  • PDF