• Title/Summary/Keyword: protease-resistant

Search Result 67, Processing Time 0.026 seconds

Identification and Characterization of Protease-Resistant Proteins from Adzuki Beans (소화 효소 저항성을 지니는 팥 단백질의 성질 규명)

  • Song, Eun-Jung;Park, Sun-Min;Wang, Qun;Lim, Jinkyu
    • Current Research on Agriculture and Life Sciences
    • /
    • v.32 no.3
    • /
    • pp.149-154
    • /
    • 2014
  • It is already known that adzuki beans (Vigna angularis) are able to control appetite. Therefore, this study tested the proteins isolated from adzuki beans for their protease resistance and interaction with the intestinal mucosa. The major proteins from adzuki beans were found to be resistant to the digestive enzymes pepsin and pancreatin, and were identified using 2D-SDS-polyacrylamide gel electrophoresis and mass spectrometry. The major adzuki proteins were easily fractionated by treating the soluble protein extract with 10mM $CaCl_2$, and were found to contain lactotransferrin, a homologous protein to the dynein light chain domain, proteinase inhibitor, and proteins with unknown functions. From a tissue binding assay using mouse intestinal tissue sections, the major protein fraction showed weak, yet significant and specific binding to the mucosa layer of the small intestine. Thus, the current results suggest that adzuki proteins are resistant to digestive enzymes, which enables them to survive protease digestion in the intestinal tract, plus they may interact with the intestinal mucosa layer. Therefore, the molecules responsible for controlling appetite in adzuki beans are presumably protease-resistant proteins that interact with the intestinal mucosa or delay digestion in the digestive tract.

Identification of protease-resistant proteins from allergenic nuts using two-dimensional gel electrophoresis and mass spectrometry

  • Santos, Ilyn L.;Lee, Ju-Young;Youm, Yujin;Lim, Jinkyu
    • Current Research on Agriculture and Life Sciences
    • /
    • v.31 no.2
    • /
    • pp.108-112
    • /
    • 2013
  • Nuts are one of the most common sources of allergies in individuals of all ages. In order for a particular protein to render an allergic reaction, it must resist proteolytic digestion by intestinal enzymes. In this study, three well-known allergenic nuts, almonds, cashew nuts, and peanuts, were used as samples, and enzyme digestion with Bacillus protease and porcine pepsin was tested. A proteomic approach using two-dimensional gel electrophoresis and an MS/MS analysis was applied to visualize and identify the proteins that were resistant to enzyme digestion. Among the 150 protein spots tested, 42 proteins were assigned functions. Due to the lack of genomic databases, 41% of the identified proteins were grouped as hypothetical. However, 12% of them were well-known allergens, including AraH. The remainder were grouped as storage, enzymes, and binding proteins.

  • PDF

Isolation of Neutral Protease Hyperproducing Bacillus sp. KN103N and Some Properties of the Enzyme (中性 Protease 高 生産性 Bacillus sp. KN103N의 分離 및 酵素의 特性)

  • Kim, Hong-Rip;O, Pyong-Su
    • Microbiology and Biotechnology Letters
    • /
    • v.19 no.2
    • /
    • pp.116-121
    • /
    • 1991
  • A bacterial strain KN, which highly produced a protease, was isolated from several soil samples and identified to to belong to the genus Bacillus. We selected mutant strain Bacillus sp. KN103N, which was hyperproducer of protease and was resistant to D-cyclowerine, from the strain KN by several steps of mutagenesis. Neutral protease productivity of mutant strain KN103N was about 55 times as much as that of the original strain KN. The optimum pH and temperature for the enzyme activity were 7.0 and 50$^{\circ}C$, respectively and the enzyme was relatively stable at pH6.0~8.0 and below 40$^{\circ}C$. The enzyme was inactivated by EDTA, but not by DFP. These results indicate that the enzyme from Bacillus sp. KN103N was a neutral (metallo-) protease.

  • PDF

Biological and serological characteristics of Pseudomonas aeruginosa from clinical specimens (임상검체로부터 분리한 녹농균의 생물학적 및 혈청학적 특성)

  • 임은경;김영희;김영부;오양효
    • Journal of Life Science
    • /
    • v.10 no.2
    • /
    • pp.157-163
    • /
    • 2000
  • One hundred eight strains of Pseudomonas aeruginosa isolated from the patients (sputum, urine, burn skin, stool and blood) of Pusan National University hospital were tested for exonezyme production, antimicrobial susceptibility and serotyping. The results obtained were as follow: In exonezyme production test, 50 strains (46.30%) produced both protease and elastase. Thirty three strains (30.55%) did not produce any exoenzyme, 18 strains (16.67%) produced only protease and 7(6.48%) stains only produced elastase. As the result of antimicrobial susceptibility by the disc diffusion method, most strains were resistant to sulfamethoxazole (96.30%). But the resistant rate against gentamicin and ticarcillin were 47.23% and 46.30% respectively. The resistant rate to other antibiotics were less than 40%. All strains could be serologically typed. Most strains were identified as type Ⅲ: among them, 51 strains were belonged to serotype E. The correlation of serotype and exoenzyme production was not found.

  • PDF

Simultaneous Expression of the Protease Inhibitors in a Rice Blast-Resistant Mutant

  • Han, Chong U.;Lee, Chan-Hui;Choi, Gyung-Ja;Kim, Jin-Cheol;Ahn, Sang-Nag;Choi, Jae-Eul;Cha, Jae-Soon;Cho, Kwang-Yun;Lee, Seon-Woo
    • The Plant Pathology Journal
    • /
    • v.21 no.4
    • /
    • pp.402-405
    • /
    • 2005
  • We have previously identified genes for four different protease inhibitors (PIs) that were induced upon rice blast infection in a rice blast resistant mutant SHM-11. Our expression analysis of the PIs indicated that induction of the PIs was the highest 24 hr after rice blast inoculation in the rice mutant SHM-11. Three PIs in the group of serine PIs were highly expressed while a cystein PI was weakly expressed upon rice blast inoculation. Four PIs were weakly induced 48 hr after pathogen inoculation in rice blast susceptible wild type rice plant. The simultaneous expression of three serine PIs was apparent from SHM-11 and two of them were induced in rice blast resistant Taebaegbyeo. One of them was induced in rice blast resistant Hwayeongbyeo while none of them were expressed in rice blast susceptible Nagdongbyeo and rice blast resistant Dongjinbyeo. Our results suggest that the expression of PI gene is rice cultivar specific and may be linked with the rice blast resistance in a specific rice mutant by the simultaneous expression of the PI genes.

Partial Purification and Characterization of the Alkaline Protease from Baccillus sp. (Bacillus sp.가 생산하는 호알카리성 Protease의 부분정제 및 특성)

  • 안장우;오태광;박용하;박관하
    • Microbiology and Biotechnology Letters
    • /
    • v.18 no.4
    • /
    • pp.344-351
    • /
    • 1990
  • An alkalophilic microoganism producing a detergent-resistant alkaline protease was isolated from soil and identified as Baeiltus sp. The alkaline protease has been partially purified by ammonium sulfate fractionation, DEAE-Cellulose, CM-Cellulose and Sephdex G-100 column chromatography. The purified alkaline protease was highly active at pH 12-13 toward casein and stable at pH values from 6 to ll. The optimum temperature for the enzyme reaction was $55^{\circ}C$. The enzyme was completely inactivated by diisopropyl fluorophosphate (DFP) indicating that the enzyme was serine protease, but considerabiy stable in the presence of surface active agents.

  • PDF

Selection of Protease Hyperproducing Mutant Strain from Serratia marcescens ATCC 2 1074 and Enzymatic Properties of the Protease (Serratia macescens ATCC 21074로부터 Protease 생산성이 높은 변이주의 선별 및 Protease의 효소학적 특성)

  • 김홍립;오평수
    • Microbiology and Biotechnology Letters
    • /
    • v.19 no.5
    • /
    • pp.450-455
    • /
    • 1991
  • A protease hyperproducer, ampicillin resistant mutant, Serratia sp. SMNT-1 was selected from Serratia marcescens ATCC 21074 by mutagenesis. The protease productivity of this strain was about 11 times as much as that of the parental strain. The enzyme showed maximal activity at pH 9.0 and $40^{\circ}C$ and was stable over the pH range from 6.0 to 10.0 at $4^{\circ}C$, whereas it was unstable at $37^{\circ}C$ in alkaline condition. the enzyme was inactivated by heating at $60^{\circ}C$ for 10 min. The enzyme was inactivated by EDTA and reactivated by $Zn^{2+}, Co^{2+},\; and \; Mn^{2+}$, but the proteoiytic activity of the enzyme was not affected by DFP. From the above results, the protease produced by Serratia sp. SMNT-1 was classified as a metalloprotese.

  • PDF

Cloning, Expression, and Characterization of Protease-resistant Xylanase from Streptomyces fradiae var. k11

  • Li, Ning;Yang, Peilong;Wang, Yaru;Luo, Huiying;Meng, Kun;Wu, Nigfeng;Fan, Yunliu;Yao, Bin
    • Journal of Microbiology and Biotechnology
    • /
    • v.18 no.3
    • /
    • pp.410-416
    • /
    • 2008
  • The gene SfXyn10, which encodes a protease-resistant xylanase, was isolated using colony PCR screening from a genomic library of a feather-degrading bacterial strain Streptomyces fradiae var. k11. The full-length gene consists of 1,437bp and encodes 479 amino acids, which includes 41 residues of a putative signal peptide at its N terminus. The amino acid sequence shares the highest similarity (80%) to the endo-1,4-${\beta}$-xylanase from Streptomyces coelicolor A3, which belongs to the glycoside hydrolase family 10. The gene fragment encoding the mature xylanase was expressed in Escherichia coli BL21 (DE3). The recombinant protein was purified to homogeneity by acetone precipitation and anion-exchange chromatography, and subsequently characterized. The optimal pH and temperature for the purified recombinant enzyme were 7.8 and $60^{\circ}C$, respectively. The enzyme showed stability over a pH range of 4.0-10.0. The kinetic values on oat spelt xylan and birchwood xylan substrates were also determined. The enzyme activity was enhanced by $Fe^{2+}$ and strongly inhibited by $Hg^{2+}$ and SDS. The enzyme also showed resistance to neutral and alkaline proteases. Therefore, these characteristics suggest that SfXyn10 could be an important candidate for protease-resistant mechanistic research and has potential applications in the food industry, cotton scouring, and improving animal nutrition.

Studies on the Proteolytic Enzyme of Mold (Part I) Production and Heat Resistance of Acid Protease by Rhizopus japonicus S-62 (사상균의 단백질분해효소에 관한 연구 (제1보) Rhizopus japonicus S-62에 의한 산성 생산 및 내열성시험)

  • 정만재
    • Microbiology and Biotechnology Letters
    • /
    • v.5 no.3
    • /
    • pp.153-158
    • /
    • 1977
  • These experiments were conducted to investigate the condition of the production and the heat resistance of the acid protease by Rhizopus japonicus S-62. The results obtained were as follows: 1) The optimum concentrations of sucrose, yeast, ammonium chloride and sodium phosphate monobasic added to the wheat bran medium in the acid protease production were 0.5%, 2.0%, 0.4%, and 0.4%, respectively. 2) KH$_2$PO$_4$ and NaH$_2$PO$_4$ were the most effective as the heat resistant agents. 3) When the enzyme solutions added with KH$_2$PO$_4$ and NaH$_2$PO$_4$ to the concentration of 2% were heated for 10 min, at 50$^{\circ}C$, their residual activities were 100%, respectively. 4) The heat resistant effects of KH$_2$PO$_4$ and NaH$_2$PO$_4$ were not observed almost above 55$^{\circ}C$.

  • PDF

Characterization of Alkaline Serine Proteases Secreted from the Coryneform Bacterium TU-19

  • Kang, Sun-Chul;Park, Sang-Gyu;Choi, Myong-Chul
    • Journal of Microbiology and Biotechnology
    • /
    • v.8 no.6
    • /
    • pp.639-644
    • /
    • 1998
  • Extracellular serine proteases were isolated from a soil bacterium, alkalophilic coryneform bacterium TU-19, which have been grown in a liquid medium optimized at 3$0^{\circ}C$ and pH 10.0. Three different sizes, 120 kDa (protease I), 80 kDa (protease II), and 45 kDa (protease III), of serine pro teases were purified using Sephadex G-150 and QAE-Sephadex chromatography (Kang et al. 1995. Agric. Chem Biotech. 38: 534-540). SDS-PAGE showed that the 120 kDa protease was degraded into the 80 kDa protease in 20 mM Tris-HCI (pH 8.0) buffer solution. This degradation was enhanced in the presence of 0.5 M NaCl and 5 mM EDTA, but was inhibited in the presence of 5 mM $CaCl_2$. These results indicated that the $Ca^{2+}$ ion seems to stabilize the 120 kDa protease like other proteases derived from Bacillus species. The $NH_2$-terminal amino acid sequences of the 10 residues of both proteases were completely identical: Met-Asn-Thr-Gln-Asn-Ser-Phe-Leu-Ile-Lys. In contrast to this, the 80 kDa protease has 1.5 times higher specific activity than the 120 kDa protease does (Kang et al. 1995. Agric. Chern. Biotech. 38: 534-540). Therefore the C-terminal of the 120 kDa protease seems to be autolyzed to the 80 kDa protease but this autolysis did not decrease the protease activity. Optimum pH and temperature of both 80 kDa and 120 kDa proteases were pH 10.5 and $45^{\circ}C$, respectively, and pH and thermal stability were almost identical. Several divalent ions except the $Fe^{2+}$ ion showed similar effects on activities of both proteases, which are similarly resistant to three different detergents.

  • PDF