• 제목/요약/키워드: protease production

검색결과 587건 처리시간 0.022초

Kinetic Studies of Alkaline Protease from Bacillus licheniformis NCIM-2042

  • Bhunia, Biswanath;Basak, Bikram;Bhattacharya, Pinaki;Dey, Apurba
    • Journal of Microbiology and Biotechnology
    • /
    • 제22권12호
    • /
    • pp.1758-1766
    • /
    • 2012
  • An extensive investigation was carried out to describe the kinetics of cell growth, substrate consumption, and product formation in the batch fermentation using starch as substrate. Evaluation of intrinsic kinetic parameters was carried out using a best-fit unstructured model. A nonlinear regression technique was applied for computational purpose. The Andrew's model showed a comparatively better $R^2$ value among all tested models. The values of specific growth rate (${\mu}_{max}$), saturation constant ($K_S$), inhibition constant ($K_I$), and $Y_{X/S}$ were found to be 0.109 $h^{-1}$, 11.1 g/l, 0.012 g/l, and 1.003, respectively. The Leudeking-Piret model was used to study the product formation kinetics and the process was found to be growth-associated. The growth-associated constant (${\alpha}$) for protease production was sensitive to substrate concentration. Its value was fairly constant up to a substrate concentration of 30.8 g/l, and then decreased.

Novel Strain Leuconostoc lactis DMLL10 from Traditional Korean Fermented Kimchi as a Starter Candidate for Fermented Foods

  • Yura Moon;Sojeong Heo;Hee-Jung Park;Hae Woong Park;Do-Won Jeong
    • Journal of Microbiology and Biotechnology
    • /
    • 제33권12호
    • /
    • pp.1625-1634
    • /
    • 2023
  • Leuconostoc lactis strain DMLL10 was isolated from kimchi, a fermented vegetable, as a starter candidate through safety and technological assessments. Strain DMLL10 was susceptible to ampicillin, chloramphenicol, clindamycin, erythromycin, gentamicin, kanamycin, streptomycin, and tetracycline. It did not show any hemolytic activity. Regarding its phenotypic results related to its safety properties, genomic analysis revealed that strain DMLL10 did not encode for any toxin genes such as hemolysin found in the same genus. It did not acquire antibiotic resistance genes either. Strain DMLL10 showed protease activity on agar containing NaCl up to 3%. The genome of DMLL10 encoded for protease genes and possessed genes associated with hetero- and homo-lactic fermentative pathways for lactate production. Finally, strain DMLL10 showed antibacterial activity against seven common foodborne pathogens, although bacteriocin genes were not identified from its genome. These results indicates that strain DMLL10 is a novel starter candidate with safety, enzyme activity, and bacteriocin activity. The complete genomic sequence of DMLL10 will contribute to our understanding of the genetic basis of probiotic properties and allow for assessment of the effectiveness of this strain as a starter or probiotic for use in the food industry.

Modulation of Kex2p Cleavage Site for In Vitro Processing of Recombinant Proteins Produced by Saccharomyces cerevisiae

  • Mi-Jin Kim;Se-Lin Park;Seung Hwa Kim;Hyun-Joo Park;Bong Hyun Sung;Jung-Hoon Sohn;Jung-Hoon Bae
    • Journal of Microbiology and Biotechnology
    • /
    • 제33권11호
    • /
    • pp.1513-1520
    • /
    • 2023
  • Kex2 protease (Kex2p) is a membrane-bound serine protease responsible for the proteolytic maturation of various secretory proteins by cleaving after dibasic residues in the late Golgi network. In this study, we present an application of Kex2p as an alternative endoprotease for the in vitro processing of recombinant fusion proteins produced by the yeast Saccharomyces cerevisiae. The proteins were expressed with a fusion partner connected by a Kex2p cleavage sequence for enhanced expression and easy purification. To avoid in vivo processing of fusion proteins by Kex2p during secretion and to guarantee efficient removal of the fusion partners by in vitro Kex2p processing, P1', P2', P4, and P3 sites of Kex2p cleavage sites were elaborately manipulated. The general use of Kex2p in recombinant protein production was confirmed using several recombinant proteins.

Characterization of Bacillus luciferensis Strain KJ2C12 from Pepper Root, a Biocontrol Agent of Phytophthora Blight of Pepper

  • Kim, Hye-Sook;Sang, Mee-Kyung;Myung, Inn-Shik;Chun, Se-Chul;Kim, Ki-Deok
    • The Plant Pathology Journal
    • /
    • 제25권1호
    • /
    • pp.62-69
    • /
    • 2009
  • In this study, we characterized the bacterial strain KJ2C12 in relation with its biocontrol activity against Phytophthora capsici on pepper, and identified this strain using morphological, physiological, biochemical, fatty acid methyl ester, and 16S rRNA gene sequence analyses. Strain KJ2C12 significantly (P=0.05) reduced both final disease severity and areas under the disease progress curves of 5-week-old pepper plants inoculated with P. capsici compared to buffer-treated controls. As for the production of antibiotics, biofilms, biosurfactant, extracellular enzyme, HCN, and swarming activity, strain KJ2C12 produced an extracellular enzyme with protease activity, but no other productions or swarming activity. However, Escherichia coli produced weak biofilm only. Strain KJ2C12 could colonize pepper roots more effectively in a gnotobiotic system using sterile quartz sand compared to E. coli over 4 weeks after treatments. However, no bacterial populations were detected in 10 mM $MgSO_4$ buffer-treated controls. Strain KJ2C12 produced significantly higher microbial activity than the $MgSO_4$-treated control or E. coli over 4 weeks after treatments. Bacterial strain KJ2C12 was identified as Bacillus luciferensis based on morphological, physiological, and biochemical characteristics as well as FAME and 16S rRNA gene sequence analyses. In addition, these results suggested that B. luciferensis strain KJ2C12 could reduce Phytophthora blight of pepper by protecting infection courts through enhanced effective root colonization with protease production and an increase of soil microbial activity.

Isolation and Characterization of a Feather Degrading Alkalophilic Streptomyces sp. TBG-S13A5 and its Keratinolytic Properties

  • Indhuja, Selvaraj;Shiburaj, Sugathan;Pradeep, Nediyaparambu Sukumaran;Thankamani, Vaidyanathan;Abraham, Teruvath Koshy
    • 한국미생물·생명공학회지
    • /
    • 제40권4호
    • /
    • pp.303-309
    • /
    • 2012
  • Keratinases are of particular interest because of their action on insoluble keratins and generally on a broad range of protein substrates. Alkalophilic and neutrophilic actinomycete strains isolated from different soil samples, rich in keratinaceous substances were screened for keratinolytic activity. An alkalophilic isolate, TBG-S13A5, was found to possess good keratinolytic activity and was able to utilize feather as the sole carbon and nitrogen source. TBG-S13A5 exhibited an off-white aerial mass color with a rectus-flexibilis type of spore chain. The morphological, microscopical and biochemical characters were comparable with that of Streptomyces albidoflavus. Fatty acid methyl ester profiling (FAME) and 16S rDNA sequence analysis confirmed its identity as a strain of S. albidoflavus. Under submerged fermentation conditions, maximum protease production was recorded on the $5^{th}$ day of incubation at $30^{\circ}C$, using basal broth of pH 9.0 with 0.25% (w/v) white chicken feather. This strain could affect feather degradation when the initial pH was 8 and above and maximum protease production was recorded when the initial pH was around 10.5. The effectiveness of the crude enzyme in destaining and leather dehairing were also demonstrated.

Restoration of Traditional Korean Nuruk and Analysis of the Brewing Characteristics

  • Lee, Jang-Eun;Lee, Ae Ran;Kim, HyeRyun;Lee, Eunjung;Kim, Tae Wan;Shin, Woo Chang;Kim, Jae Ho
    • Journal of Microbiology and Biotechnology
    • /
    • 제27권5호
    • /
    • pp.896-908
    • /
    • 2017
  • In this study, a total of 58 different kinds of nuruk (a traditional Korean fermentation starter) were prepared, including 46 kinds of restored nuruk from ancient documents. Each nuruk was evaluated by analysis of its saccharification power, and the enzyme activities of glucoamylase, ${\alpha}$-amylase, ${\beta}$-amylase, protease, and ${\beta}$-glucanase. The range of saccharification power (sp) of the restored nuruk ranged between 85 and 565 sp. The diastatic enzymes, ${\alpha}$-amylase, ${\beta}$-amylase, and glucoamylase, were significantly correlated to the saccharification power value; conversely, ${\beta}$-glucanase and protease did not have a correlative relationship with saccarification power. In addition, their brewing properties on chemical and organoleptic aspects of traditional alcoholic beverage production were compared. Each raw and supplementary material contained in nuruk showed its own unique characteristics on Korean alcoholic beverage brewing. For the first time, in this study, the traditional Korean nuruk types mentioned in ancient documents were restored using modernized production methods, and also characterized based on their brewing properties. Our results could be utilized as a basis for further study of traditional alcoholic beverages and their valuable microorganisms.

Effects of Different Levels of Supplementary Alpha-amylase on Digestive Enzyme Activities and Pancreatic Amylase mRNA Expression of Young Broilers

  • Jiang, Zhengyu;Zhou, Yanmin;Lu, Fuzeng;Han, Zhaoyu;Wang, Tian
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제21권1호
    • /
    • pp.97-102
    • /
    • 2008
  • Four hundred and forty 1-day-old Arbor Acre broilers were fed commercial starter diets with 0, 250, 750 and 2,250 mg/kg of an alpha-amylase preparation from 1 to 21 days of age to investigate the effects of an exogenous enzyme on growth performance, activities of digestive enzymes in the pancreas and anterior intestinal contents and pancreatic amylase mRNA expression. Body weight gain (BWG) and average daily gain (ADG) increased linearly (p<0.01) with increasing levels of supplementary amylase but feed conversion ratio (FCR) was not affected. There was a negative quadratic change of protease and amylase in the small intestinal contents with the increase of supplementary amylase level. The activity of intestinal trypsin was also increased (p<0.05). Lipase was unaffected by amylase supplementation (p>0.05). The pancreatic protease, trypsin, and lipase were not affected by exogenous amylase levels. Consistent with the tendency for a linear depression of amylase activity, pancreatic ${\alpha}$-amylase mRNA was down-regulated by dietary amylase supplementation. The present study suggested that oral administration of exogenous amylase affected activities of intestinal enzymes and the production of pancreatic digestive enzymes in a dose-dependent manner.

Identification and Antimicrobial Activity Detection of Lactic Acid Bacteria Isolated from Corn Stover Silage

  • Li, Dongxia;Ni, Kuikui;Pang, Huili;Wang, Yanping;Cai, Yimin;Jin, Qingsheng
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제28권5호
    • /
    • pp.620-631
    • /
    • 2015
  • A total of 59 lactic acid bacteria (LAB) strains were isolated from corn stover silage. According to phenotypic and chemotaxonomic characteristics, 16S ribosomal DNA (rDNA) sequences and recA gene polymerase chain reaction amplification, these LAB isolates were identified as five species: Lactobacillus (L.) plantarum subsp. plantarum, Pediococcus pentosaceus, Enterococcus mundtii, Weissella cibaria and Leuconostoc pseudomesenteroides, respectively. Those strains were also screened for antimicrobial activity using a dual-culture agar plate assay. Based on excluding the effects of organic acids and hydrogen peroxide, two L. plantarum subsp. plantarum strains ZZU 203 and 204, which strongly inhibited Salmonella enterica ATCC $43971^T$, Micrococcus luteus ATCC $4698^T$ and Escherichia coli ATCC $11775^T$ were selected for further research on sensitivity of the antimicrobial substance to heat, pH and protease. Cell-free culture supernatants of the two strains exhibited strong heat stability (60 min at $100^{\circ}C$), but the antimicrobial activity was eliminated after treatment at $121^{\circ}C$ for 15 min. The antimicrobial substance remained active under acidic condition (pH 2.0 to 6.0), but became inactive under neutral and alkaline condition (pH 7.0 to 9.0). In addition, the antimicrobial activities of these two strains decreased remarkably after digestion by protease K. These results preliminarily suggest that the desirable antimicrobial activity of strains ZZU 203 and 204 is the result of the production of a bacteriocin-like substance, and these two strains with antimicrobial activity could be used as silage additives to inhibit proliferation of unwanted microorganism during ensiling and preserve nutrients of silage. The nature of the antimicrobial substances is being investigated in our laboratory.

Bacillus subtilis HA를 이용한 soybean grit의 고체발효 기간에 따른 생리활성물질 생산 및 항산화 효과 (Production of Bioactive Components and Anti-Oxidative Activity of Soybean Grit Fermented with Bacillus subtilis HA according to Fermentation Time)

  • 김지은;이삼빈
    • 한국식품과학회지
    • /
    • 제41권2호
    • /
    • pp.179-185
    • /
    • 2009
  • Soybean grit를 이용하여 B. subtilis HA에 의한 고체발효를 통해 얻어진 발효물의 발효 시간에 따른 생리활성물질의 변화 및 항산화능을 평가하였다. 발효시간이 증가함에 따라 혈전분해효소 활성 및 protease 활성은 계속적으로 증가하는 경향을 보였으며, ${\alpha}$-amylase 활성은 발효 5일에서 최대값을 나타내었다. Tyrosine 함량은 발효 5일에서 최대값을 보였으며, 콩 가수분해물중에서 분자량 3,000 Da 이하의 분자량을 갖는 콩 펩타이드 및 갈변화색소는 발효시간이 증가함에 따라서 증가하는 경향을 보였다. Soybean grit 발효물의 총 폴리페놀함량은 주정 추출물이 물 추출물보다 전반적으로 높게 나타났으며 주정 추출물은 발효시간 3일째 18.10 mg/g으로 가장 높은 함량을 나타내었다. 항산화능을 나타내는 DPPH 라디칼 소거능은 발효시간 3일째 가장 높은 값을 보였으며, ABTS 라디칼 소거능은 발효 기간이 증가함에 따라 대조군에 비해 증가되었다.

Increase of a Fibrinolytic Enzyme Production through Promoter Replacement of aprE3-5 from Bacillus subtilis CH3-5

  • Yao, Zhuang;Meng, Yu;Le, Huong Giang;Lee, Se Jin;Jeon, Hye Sung;Yoo, Ji Yeon;Kim, Jeong Hwan
    • Journal of Microbiology and Biotechnology
    • /
    • 제31권6호
    • /
    • pp.833-839
    • /
    • 2021
  • Bacillus subtilis CH3-5 isolated from cheonggukjang secretes a 28 kDa protease with a strong fibrinolytic activity. Its gene, aprE3-5, was cloned and expressed in a heterologous host (Jeong et al., 2007). In this study, the promoter of aprE3-5 was replaced with other stronger promoters (Pcry3A, P10, PSG1, PsrfA) of Bacillus spp. using PCR. The constructed chimeric genes were cloned into pHY300PLK vector, and then introduced into B. subtilis WB600. The P10 promoter conferred the highest fibrinolytic activity, i.e., 1.7-fold higher than that conferred by the original promoter. Overproduction of the 28 kDa protease was confirmed using SDS-PAGE and fibrin zymography. RT-qPCR analysis showed that aprE3-5 expression was 2.0-fold higher with the P10 promoter than with the original promoter. Change of the initiation codon from GTG to ATG further increased the fibrinolytic activity. The highest aprE3-5 expression was observed when two copies of the P10 promoter were placed in tandem upstream of the ATG initiation codon. The construct with P10 promoter and ATG and the construct with two copies of P10 promoter in tandem and ATG exhibited 117% and 148% higher fibrinolytic activity, respectively, than that exhibited by the construct containing P10 promoter and GTG. These results confirmed that significant overproduction of a fibrinolytic enzyme can be achieved by suitable promoter modification, and this approach may have applications in the industrial production of AprE3-5 and related fibrinolytic enzymes.