• Title/Summary/Keyword: protease production

Search Result 587, Processing Time 0.029 seconds

해조류 첨가가 쌀코지 제조와 효소활성에 미치는 영향 (Effects of Seaweeds on Rice Koji Production and Enzyme Activity)

  • 전준영;이미향;정인학;정민정;김병목
    • 한국수산과학회지
    • /
    • 제51권4호
    • /
    • pp.369-375
    • /
    • 2018
  • This study investigated the effects of selected seaweeds on rice koji preparation (rice inoculated with Aspergillus luchuensis) and enzyme activity. Four types of rice koji were prepared using one of three seaweeds (0.5% laver, 0.5% kelp and 0.5% green laver) or a control for 72 h. The changes in the moisture content, water activity, pH, total mold cell count, amylase and protease activities were measured. During preparation, there was no significant difference in the moisture content among the four kojis, whereas the pH in the kojis made with either laver or green laver decreased rapidly compared with the control (P<0.05). This seemed to result from the seaweeds promoting the growth of mold cells. In terms of the activities of both amylase and protease, the koji with laver was superior. Subsequently, the amylase and protease activities of the koji made with laver were evaluated at various pHs (3 to 9), temperatures ($15-55^{\circ}C$) and NaCl concentrations (0-10%). The activities of both enzymes decreased notably at pH 9 and the protease activity decreased at temperatures above $45^{\circ}C$. Although the activities of both enzymes decreased at greater than 2.5% NaCl, activity was present at 10% NaCl.

Production of Polyphenols and Flavonoids and Anti-Oxidant Effects of Lactic Acid Bacteria of Fermented Deer Antler Extract

  • Kim, Hyun-Kyoung;Choi, Kang-Ju;Ahn, Jong-Ho;Jo, Han-Hyung;Lee, Chang-Soon;Noh, Ji-Ae
    • International journal of advanced smart convergence
    • /
    • 제10권1호
    • /
    • pp.197-208
    • /
    • 2021
  • The deer antler has been used as a major drug in oriental medicine for a long time. Recently, the demand for easy-to-take health functional foods is increasing due to economic development and changes in diet. As part of research on the development of functional materials for antlers, lactic acid fermentation of antler extract was performed. It was intended to develop a functional material with enhanced total polyphenol and flavonoid content and enhanced antioxidant activity. Lactic acid bacteria fermentation was performed by adding 4 types of lactic acid bacteria starter products, B. longum, Lb. Plantarum, Lb. acidophilus and mixture of 8 types of lactic acid bacteria to the antler water extract substrate, respectively. During the fermentation of lactic acid bacteria, the number of proliferation, total polyphenol and total flavonoid content, DPPH radical scavenging and antioxidant activity were quantified and evaluated. As a result of adding these four types of lactic acid bacteria to the antler water extract substrate, the number of lactic acid bacteria measured was 2.04~5.00×107. Meanwhile, a protease (Baciullus amyloliquefaciens culture: Maxazyme NNP DS) was added to the antler extract to decompose the peptide bonds of the contained proteins. Then, these four types of lactic acid bacteria were added and the number of lactic acid bacteria increased to 2.84×107 ~ 2.21×108 as the result of culture. The total polyphenol contents were 4.82~6.26 ㎍/mL in the lactic acid bacteria fermentation extracts, and after the reaction of protease enzyme and lactic fermentation, increased to 14.27~20.58 ㎍/mL. The total flavonoid contents were 1.52~2.21 ㎍/ml in the lactic acid bacteria fermentation extracts, and after the protease reaction and fermentation, increased to 5.59 ~ 8.11 mg/mL. DPPH radical scavenging activities of lactic acid bacteria fermentation extracts was 17.03~22.75%, but after the protease reaction and fermentation, remarkably increased to 32.82~42.90%.

Effect of dietary metallo-protease and Bacillus velezensis CE 100 supplementations on growth performance, footpad dermatitis and manure odor in broiler chickens

  • Park, Cheol Ju;Sun, Sang Soo
    • Animal Bioscience
    • /
    • 제35권10호
    • /
    • pp.1628-1634
    • /
    • 2022
  • Objective: This study focused on the effect of dietary metallo-protease and Bacillus velezensis CE 100 on growth performance, carcass parameters, intestinal microflora, footpad dermatitis (FPD), and manure odor in broiler chickens. Methods: One hundred-ten (two-day-old Ross 308) broiler chicks were randomly assigned to five groups with two replicate pens. The dietary treatments were divided to control, metallo-protease groups (A1, added with 0.1%; A2, added with 0.2%) and B. velezensis CE 100 groups (B1, added with 0.5%; B2, added with 1.0%). Results: The feed intake was decreased in A1 and B2 compared to the other group (p<0.05). The liver weight was lower in B2 than in A2 (p<0.05). The Salmonella in the cecum was decreased in A2 compared to control and A1 (p<0.05). However, the lactic acid bacteria were increased in all treatments (p<0.05). The litter moisture content was decreased in A2, B1, and B2 (p<0.05). The litter quality visual score was increased in all treatments (p<0.05). The FPD score and prevalence were reduced in all treatments (p<0.05). The (CH3)2S emission was decreased in all treatments (p<0.05). Conclusion: The present study indicated that both additives improve litter quality and reduce the incidence of FPD. These findings suggest that dietary metallo-protease and B. velezensis CE 100 have the potential to improve the broiler chickens' welfare.

Ruminal Protein Degradation Characteristics of Cell Mass from Lysine Production

  • Seo, S.;Kim, H.J.;Lee, S.Y.;Ha, Jong K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제21권3호
    • /
    • pp.364-370
    • /
    • 2008
  • Chemical analysis and in vitro studies were conducted to investigate the nutritive value for ruminants of cell mass from lysine production (CMLP) which is a by-product of the lysine manufacturing process. Proximate analysis, protein fractionation, and in vitro protein degradation using protease from Streptomyces griseus and strained ruminal fluid were carried out to estimate ruminal protein degradability of CMLP with two reference feedstuffs-soybean meal (SBM) and fish meal (FM). Amino acid composition and pepsin-HCl degradability were also determined to evaluate postruminal availability. CMLP contained 67.8% crude protein with a major portion being soluble form (45.4% CP) which was composed of mainly ammonium nitrogen (81.8% soluble CP). The amount of nucleic acids was low (1.15% DM). The total amount of amino acids contained in CMLP was 40.60% DM, which was lower than SBM (47.69% DM) or FM (54.08% DM). CMLP was composed of mainly fraction A and fraction B2, while the protein fraction in SBM was mostly B2 and FM contained high proportions of B2 and B3 fractions. The proportion of B3 fraction, slowly degradable protein, in CP was the highest in fish meal (23.34%), followed by CMLP (7.68%) and SBM (1.46%). CMLP was degraded up to 51.40% at 18 h of incubation with Streptomyces protease, which was low compared to FM (55.23%) and SBM (83.01%). This may be due to the insoluble portion of CMLP protein being hardly degradable by the protease. The in vitro fermentation by strained ruminal fluid showed that the amount of soluble fraction was larger in CMLP (40.6%) than in SBM (17.8%). However, because the degradation rate constant of the potentially degradable fraction of CMLP (2.0%/h) was lower than that of SBM (5.8%/h), the effective ruminal protein degradability of CMLP (46.95%) was slightly lower than SBM (53.77%). Unavailable fraction in the rumen was higher in CMLP (34.0%) compared to SBM (8.8%). In vitro CP degradability of CMLP by pepsin was 80.37%, which was lower than SBM (94.42%) and FM (89.04%). The evaluation of protein degradability using different approaches indicated that soluble protein in CMLP may supply a large amount of ammonia in the rumen while insoluble protein can be by-passed from microbial attacks due to its low degradability. The results from this study suggest that CMLP can be used as a protein supplement to ruminants for supplying both non-protein nitrogen to rumen microbes and rumen undegradable protein to the host animal.

김치에서 분리한 Streptococcus sp. J-C1의 bacteriocin 생산 (Bacteriocin Production by Streptococcus sp. J-C1 Isolated from Kimchi)

  • 조영배;조영임;백형석;전홍기
    • 생명과학회지
    • /
    • 제6권4호
    • /
    • pp.270-277
    • /
    • 1996
  • Streptococcus sp J-C1 producing bacteriocin was isolated from Kimchi. The optimum conditions for bacteriocin production by Streptococcus sp. J-C1 were evaluated. For the maximum yield of bacteriocin production by Streptococcus sp. J-C1, the cell should be harvested at the late stationary phase and the temperature, pH and NaCl concentration should be 25$\circ$C, pH 8 and without the addition of NaCl, respectively. Sucrose should be used as a carbon source and organic nitrogen such as peptone should be used as a nitorgen source for the best yield. The production of bacteriocin is related to the cell growth of Streptococcus sp. J-C1. The bacteriocin from Streptococcus sp. J-C1 was active for gram positive microorganisms such as Lactobacillus sp., Leuconoctoc sp., Lactococcus sp., Streptococcus mutans, Staphylococcus aureus amd Bacillus subtilis and also active for gram negetive bacteria such as Acetobacter aceti. Antibacterial activity of the bacteriocin was completely disappeared by protease treatment.

  • PDF

The Influence of NaCl and Carbonylcyanide-m-Chlorophenylhydrazone on the Production of Extracellular Proteases in a Marine Vibrio Strain

  • Kim, Young-Jae
    • Journal of Microbiology
    • /
    • 제42권2호
    • /
    • pp.156-159
    • /
    • 2004
  • In general, the salinity of the ocean is close to 3.5% and marine vibrios possess the respiratory chain-linked Na$\^$+/ pump. The influence of sodium chloride and the proton conductor carbonylcyanide m-chlo-rophenylhydrazone (CCCP) on the production of extracellular proteases in a marine Vibrio strain was examined. At the concentration of 0.5 M, sodium chloride minimally inhibited the activity of extra-cellular proteases by approximately 16%, whereas at the same concentration, the producton of extra-cellular proteases was severely inhibited. On the other hand, the production of extracellular proteases was completely inhibited by the addition of 2 ${\mu}$M CCCP at pH 8.5, where the respiratory chain-linked Na$\^$+/ pump functions.

Chromosomal Integration에 의해 제조한 Bacillus clausii C5 유래의 alkaline protease의 세제 첨가제 응용성 (Feasibility as a Laundry Detergent Additive of an Alkaline Protease from Bacillus clausii C5 Transformed by Chromosomal Integration)

  • 주한승;최장원
    • KSBB Journal
    • /
    • 제27권6호
    • /
    • pp.352-360
    • /
    • 2012
  • Bacillus clausii I-52 which produced SDS- and $H_2O_2$-tolerant extracellular alkaline protease (BCAP) was isolated from heavily polluted tidal mud flat of West Sea in Incheon, Korea and stable strain (transformant C5) of B. clausii I-52 harboring another copy of BCAP gene in the chromosome was developed using the chromosome integration vector, pHPS9-fuBCAP. When investigated the production of BCAP using B. clausii transformant C5 through pilot-scale submerged fermentation (500 L) at $37^{\circ}C$ for 30 h with an aeration rate of 1 vvm and agitation rate of 250 rpm, protease yield of approximately 105,700 U/mL was achieved using an optimized medium (soybean meal 2%, wheat flour 1%, sodium citrate 0.5%, $K_2HPO_4$ 0.4%, $Na_2HPO_4$ 0.1%, NaCl 0.4%, $MgSO_4{\cdot}7H_2O$ 0.01%, $FeSO_4{\cdot}7H_2O$ 0.05%, liquid maltose 2.5%, $Na_2CO_3$ 0.6%). The enzyme stability of BCAP was increased by addition of polyols (10%, v/v) and also, the stabilities of BCAP towards not only the thermal-induced inactivation at $50^{\circ}C$ but also the SDS and $H_2O_2$-induced inactivation at $50^{\circ}C$ were enhanced. Among the polyols examined, the best result was obtained with propylene glycol (10%, v/v). The BCAP supplemented with propylene glycol exhibited extreme stability against not only the detergent components such as ${\alpha}$-orephin sulfonate (AOS) and zeolite but also the commercial detergent preparations. The granulized enzyme of BCAP was prepared with approximately 1,310,000 U/g of granule. Wash performance analysis using EMPA test fabrics revealed that BCAP granule exhibited high efficiency for removal of protein stains in the presence of anionic surfactants as well as bleaching agents. When compared to Savinase 6T$^{(R)}$ and Everlase 6T$^{(R)}$ manufactured by Novozymes, BCAP under this study probably showed similar or higher efficiency for the removal of protein stains. These results suggest that the alkaline protease produced from B. clausii transformant C5 showing high stability against detergents and high wash performance has significant potential and a promising candidate for use as a detergent additive.

김치원료의 amylase, protease, peroxidase, ascorbic acid oxidase 활성 (Amylase, Pretease, Peroxidase and Ascorbic Acid Oxidase Activity of Kimchi Ingredients)

  • 김현정;이정진;최미정;최신양
    • 한국식품과학회지
    • /
    • 제30권6호
    • /
    • pp.1333-1338
    • /
    • 1998
  • 본 연구에서는 김치재료 중 존재하는 각종 효소의 특성을 이용한 김치의 품질개선을 위한 기초자료를 제시하고자 몇 가지의 대표적인 가수분해효소와 산화효소의 활성을 조사하였다. 가수분해효소로는 발효원으로 사용되고 균체증식에 필수적인 당 및 아미노산의 생산에 관여하는 amylase와 protease를 연구하였으며, 산화효소로는 이취발생과 vitamin C의 산화에 관여하는 peroxidase 및 ascorbic acid oxidase 활성을 조사하였다. 시료 1 g중 존재하는 효소활성은 ${\alpha}-amylase$의 경우 멸치젓, 고춧가루, 새우젓, 굴에서, ${\beta}-amylase$는 멸치젓, 굴, 무에서 높게 나타났다. Protease의 경우는 멸치젓, 새우젓, 고춧가루에서 높게 나타났으며, peroxidase와 ascorbic acid oxidase는 각각 무, 오이, 파 및 멸치젓, 고춧가루, 새우젓에서 높게 나타나 김치재료중 발효식품인 멸치젓과 새우젓이 전반적으로 높은 가수분해 및 산화활성을 나타내었고, 고춧가루는 가수분해효소 활성이, 무, 오이는 산화효소 활성이 높게 나타났다.

  • PDF

유카(Yucca shidigera) 추출물 첨가에 의한 청국장의 풍미 개선에 관한 연구 (Flavor Improvement of Chungkookjang by Addition of Yucca (Yucca shidigera) Extract)

  • 인재평;이시경;안병권;정일민;장진혁
    • 한국식품과학회지
    • /
    • 제34권1호
    • /
    • pp.57-64
    • /
    • 2002
  • Bacrillus sp. b01 균주를 사용한 청국장 제조 시 yucca 추출물의 첨가가 청국장의 숙성에 미치는 영향을 검토하고자 청국장 숙성 과정중의 아미노태 질소, 암모니아태 질소, amylase 활성, protease 활성, 유기산 및 향기성분의 변화를 조사하였다. 청국장 숙성 중 yucca 첨가구에서 아미노태 질소 함량은 증가하였으며, 암모니아태 질소는 감소하였다. Amylase 활성은 yucca 첨가구들이 대조구와 비교 시 높게 나타났지만 yucca 추출물을 1 mg/g 첨가 시 감소함을 보였다. Protease 활성은 yucca 추출물 첨가구가 무 첨가구보다 다소 높게 나타났다. 청국장에서의 유기산을 citric acid, acetic acid, malic acid가 검출되었고, yucca 첨가구에서 대조구에 비하여 그 함량이 다소 높았다. 또한 yucca 추출물 첨가 시 2,5-dimethylpyrazine과 2,6-dimethylpyrazine은 증가하였고, tetramethylpyrazine이 숙성 기간 중 감소함을 보였다. 관능검사에서도 yucca 추출물 0.5 mg/g을 첨가시 무 첨가구보다 유의적으로 맛과 향이 우수하였다.

음식물 쓰레기 퇴비화를 위한 미생물 최적 활성 조건 (Studies on the Optimun Activation Condition for Food Waste Composting by Microorganism in Food Waste)

  • 정준영;정광용;박우균
    • 한국환경농학회지
    • /
    • 제18권3호
    • /
    • pp.272-279
    • /
    • 1999
  • 음식물 쓰레기 자체미생물에 의한 퇴비화 가능성을 검토하기 위해 음식물 쓰레기 자체 미생물의 분포 및 수를 조사한 결과 $30^{\circ}C$에서 세균은 전 시료구에서 $10^5-10^7CFU/g$, $50^{\circ}C$에서 $10^5-10^6\;CFU/g$이 검출되었다. 효소생산 미생물은 $30^{\circ}C$$50^{\circ}C$에서 amylase, protease 생산균주는 계절에 관계없이 $10^3-10^7\;CFU/g$로 검출되었다. 한편 30일간의 퇴비화 실험결과 $50^{\circ}C$ 항온에서 음식물 쓰레기만을 이용한 시험구(FW1)는$30^{\circ}C$(FW2) 시험구와 유사하였으나 온도구배 적용구(FW3) 그리고 미생물 부숙제첨가구(FM1, FM2)에 비해 가장 많은 $CO_2$ gas 발생율을 보였고 유기물 분해율, 조단백함량 변화에 있어서 가장 우수한 것으로 나타났다. 또한 퇴비화 과정중 미생물과 효소생산 균주의 변화를 조사한 결과 FW1의 경우 $30^{\circ}C$, $50^{\circ}C$, $60^{\circ}C$의 전배양 온도에서 $10^5-10^9\;CFU/ml$의 세균과 Amylase 및 Protease 생산균주가 검출되어 미생물 부숙제를 첨가한 시험구에 비해 우수하였다. 이상의 결과로 음식물 쓰레기 자체 총균수 및 효소 생산균주 그리고 퇴비과정중의 성분 변화를 고려할 때 $50^{\circ}C$의 부숙온도가 가장 효율적이며 음식물 쓰레기 퇴비화에 별도의 미생물 부숙제 사용은 불필요한 것으로 추측된다.

  • PDF