• Title/Summary/Keyword: propylene glycol (PG)

Search Result 64, Processing Time 0.025 seconds

The Stability of Piroxicam in Propylene Glycol (프로필렌글리콜에서의 피록시캄의 안정성)

  • Shin, Young-Shin;Shin, Young-Hee;Lee, Chi-Ho
    • Journal of Pharmaceutical Investigation
    • /
    • v.18 no.4
    • /
    • pp.203-208
    • /
    • 1988
  • The stability and solubility of piroxicam in propylene glycol (PG), polyethylene glycol (PEC), and PG-water cosolvents have been studied by using high performance liquid chromatography. The degradation rate followed an apparent first-order kinetic and the reaction rate constants at 70, 80, and $90^{circ}C$ were determined. From these rate constants, the activation energy and the rate constant of piroxicam at $25^{circ}C$ in pure PG calculated by Arrhenius equation were 23.34 kcal/mole and $7.0\;{\times}\;10^{-4}\;day^{-1}$, respectively. Both of PG and PEG increased the solubility of the drug, but PEG was more effective.

  • PDF

Effects of Propylene Glycol on the Physical Properties of Poly(vinyl alcohol) Solutions and Films

  • Cho, Yong-Han;Kim, Byoung-Chul;Dan, Kyung-Sik
    • Macromolecular Research
    • /
    • v.17 no.8
    • /
    • pp.591-596
    • /
    • 2009
  • To trace the plasticizing effects of propylene glycol (PG) on poly(vinyl alcohol) (PVA), the rheological properties of PVA solutions in dimethyl sulfoxide (DMSO) and the physical properties of PVA films were discussed in terms of PG content. Both properties were closely related to the hydrogen bond breaking effects of PG The 6 and 12 wt% PVA solutions containing PG exhibited Bingham behavior, which was more noticeable at lower plasticizer content and higher polymer concentration. The 6 wt% PVA solutions containing more than 30 wt% PG showed a sudden decrease of viscosity over the frequency range of 0.08 and 0.2 rad/s. However, the 12 wt% PYA solutions showed no viscosity reduction even at a PG content up to 40 wt%. The glass transition temperature of the PVA/PG films was almost linearly decreased with increasing PG content but an abrupt reduction was observed at a plasticizer content 30 wt%, suggesting that the hydrogen bond breaking effects of PG on PVA became dominant between 20 and 30 wt%. This effect was further supported by the similar tendency of the tensile properties.

Pyrolytic Behavior of Propylene Glycol and glycerine (Propylene Glycol과 glycerine의 열본해 특성)

  • Lee Jae-Gon;Lee Chang-Gook;Baek Shin;Jang Hee-Jin;Kwag Jae-Jin;Lee Dong-Wook
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.27 no.1 s.53
    • /
    • pp.31-39
    • /
    • 2005
  • This study was conducted to evaluate the characterization of the pyrolysis products of propylene glycol(PG) and glycerine alone and together with tobacco. The weight change of the samples during the pyrolysis was measured by a thermal analyzer(STD-2960). The pyrolysis products were determined by GC/MS after pyrolysis using a curie-point pyrolyzer(CPP, $220^{\circ}C,\;420^{\circ}C,\;650^{\circ}C,\;and\;920^{\circ}C$) and a double-shot pyrolyzer(DSP, $220^{\circ}C,\;420^{\circ}C,\;650^{\circ}C,\;and\;800^{\circ}C$), respectively. The pyrolysis products from tobacco with and without the addition of PG($2\%$) and glycerine($2\%$ were assayed for its pyrolytic behavior. The results showed that a dramatic change in weight of PG and glycerine was observed at $175^{\circ}C\;and\;249^{\circ}C$, respectively. PG and glycerine showed different patterns for their pyrolysis products according to the method of pyrolysis. Namely, the change rate in pyrolysis with DSP was much higher than that of CPP at above $650^{\circ}C$. The major pyrolysis products of PG were propene, acetaldehyde, propanal, and acetol; the major pyrolysis products of glycerine were 2-propenal, 2-propenol, acetol, and acetic acid. In the pyrolysis experiments of tobacco added PG and glycerine, the pyrolysis products of PG and glycerine weren't detected additionally, except for diethyleneglycol diacetate. From these results, it can be concluded that the PG and glycerine added to tobacco would not be expected to pyrolyse extensively during smoking.

Lyotropic Behaviors of a Phospholipid-based Lamella Liquid Crystalline Phase Hydrated by Propylene Glycol as a Polar Solvent: Correlation of DSPC vs PG Concentration

  • Jeong, Tae-Hwa;Oh, Seong-Geun
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.1
    • /
    • pp.108-114
    • /
    • 2007
  • The lyotropic behaviors to form the structure of distearoylphosphatidylcholine (DSPC)-based liquid crystal (LC) hydrated by only propylene glycol (PG) without water were examined by differential scanning calorimetry (DSC), X-ray diffractions (XRD), polarized microscope (PM) and transmission electron microscope (TEM). By increasing the amount of PG instead of water, it showed the phase transition to be gradually changed from anisotropic structures to other structures more close to isotropic ones and their appearance to be changed from solid-like states to liquid-like ones with more fluidity. Below 50% w/w PG, the mixtures of DSPC and PG resulted in no direct observation of LC structure through PM because they were very close to solid-states. From 55% w/w to 90% w/w of PG, the dense lamella crystalline structures were observed through PM, and their thickness and area decreased as the content of PG increased. Measured by DSC with heating process, the main phase transition from α -lamella phase to isotropic phase appeared from 52.89 °C to 47.41 °C to show linearly decreasing behaviors because PG affects the hydrophobic region of DSPC-based lamella phase. The repeating distance of the lamella phase and the interlayer distance between bilayers were calculated with XRDs and the average number of bilayers related to the thickness in LC structure was approximately estimated by combining with TEM results. The WAXS and DSC measurements showed that all of PG molecules contributed to swelling both the lipid layer in the edge region of lamella phase close to phosphate groups and the interlayer between bilayers below 90% w/w of PG. The phase and thermal behaviors were found to depend on the amount of PG used by means of dissolving DSPC as a phospholipid and rearranging its structure. Instead of water, the inducement of PG as a polar solvent in solid-lamella phase is discussed in terms of the swelling effect of PG for DSPC-based lamella membrane.

Solubility and Physicochemical Stability of Ondansetron Hydrochloride in Various Vehicles (용제 중 염산온단세트론의 용해성 및 안정성)

  • Gwak, Hye-Sun;Oh, Ik-Sang;Chun, In-Koo
    • Journal of Pharmaceutical Investigation
    • /
    • v.33 no.1
    • /
    • pp.45-49
    • /
    • 2003
  • The solubility and stability of ondansetron hydrochloride (OS) in various vehicles were determined. The effect of cyclodextrins (CD) on the solubility of OS in water was determined by equilibrium solubility method. The solubility of OS at $32^{\circ}C$ increased in the rank order of isopropyl myristate (IPM) < propylene glycol laurate (PGL) ${\ll}$ propylene glycol monolaurate < propylene glycol monocaprylate (PGMC) < poly(ethylene glycol) 400 < diethylene glycol mono ethyl ether (DGME) < ethanol < poly(ethylene glycol) 300 < water (36.1 mg/ml) ${\ll}$ propylene glycol (PG) (283 mg/ml). The addition of PG or DGME to non-aqueous vehicles such as IPM, PGL and PGMC markedly increased the solubility of OS. The addition of CDs in water increased the solubility. Apparent stability constant for the CD complexation with OS was calculated to be $25.5\;M^{-1}$ for $2-hydroxypropyl-{\beta}-CD\;(2HP{\beta}CD)$. Twenty mM ${\beta}-CD$, 69.4 mM sulfobutyl ether ${\beta}-CD$ and 115.4 mM $2HP{\beta}CD$ increased the aqueous solubilty of OS 1.27, 2.18 and 1.85 times, respectively. OS was stable in buffered aqueous solution (pH 5.0). However, OS was relatively unstable in non-aqueous vehicles in the order of PG

Effects of Propylene Glycol on Milk Production, Serum Metabolites and Reproductive Performance during the Transition Period of Dairy Cows

  • Lien, T.F.;Chang, L.B.;Horng, Y.M.;Wu, Chean-Ping
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.23 no.3
    • /
    • pp.372-378
    • /
    • 2010
  • The objective of this study was to investigate the effects of an oral drench of propylene glycol (PG) on milk production, serum metabolites and reproductive performance during the transition period of animals. Twenty-four 2-3 multiparous Holstein cows (average body weight 565 kg, body condition score about 3.6, at the $9^{th}$ month of gestation) were selected, blocked, and then randomly assigned into a PG and a control group. The control and the PG group cows were orally drenched with water or 50 ml sugarcane molasses mixed with 500 ml PG from 7 days pre-partum to 30 days post-partum, respectively. Experimental results indicated that the oral drench PG had no effect on dry matter intake (DMI). The milk yield of the PG group was significantly higher than that of the control group (p<0.05), whereas milk fat content, milk protein and somatic cell counts (SCC) were not significantly different between groups. Concentration of plasma glucose in the PG group was significantly higher than that of the control group (p<0.05). Conversely, the concentrations of non-esterified fatty acids (NEFA), and blood urea nitrogen (BUN) in the PG group were lower than those of the control group (p<0.05). Concentrations of insulin and ketone bodies were not significantly difference between groups. Body condition score (BCS) in the PG group was significantly higher than that of the control group (p<0.05). In reproductive performance there was no difference between groups. The experimental results indicate that supplementation of PG during the transition period of dairy cows can supply energy rapidly, resulting in reduced catabolism of body tissue and increased milk yield.

Effects of Condensed Phosphates on the Quality and Self-life of Wet Noodle (중합인산염이 생면의 품질 및 저장성에 미치는 영향)

  • 김진성;손종연
    • Korean journal of food and cookery science
    • /
    • v.20 no.2
    • /
    • pp.133-137
    • /
    • 2004
  • This study was investigated the effects of condensed phosphates (pyrophosphate, metaphosphate and polyphosphate) on the quality and self-life of wet noodle. The initial pasting temperatures were increased by the addition of pyrophosphate and metaphosphate, respectively, whereas those of propylene glycol and polyphosphate were decreased. Pyrophosphate showed the highest final viscosity, whereas metaphosphate showed the lowest. Setback of PG, polyphosphate, pyrophosphate and metaphosphate were all lower than the control. The water absorption ratios of PG and polyphosphate were increased compared to the control, whereas those of pyrophosphate and metaphosphate were decreased. The volume expansion ratios of PG and polyphosphate were slightly increased. Turbidities of PG and polyphosphate were lower than those of the control, whereas those of pyrophosphate and metaphosphate were increased in cooked noodles. The bacterial counts of wet noodles made with PG, polyphosphate, metaphosphate and pyrophosphate were all lower than those of the control after storage at 5$^{\circ}C$.

Solubility and Stability of Melatonin in Propylene glycol and 2-hydroxypropyl-${\beta}$-cyclodextrin vehicles

  • Lee, Beom-Jin;Choi, Han-Gon;Kim, Chong-Kook;Parrott, Keith-A.;Ayres, James-W.;Sack, Robert-L.
    • Archives of Pharmacal Research
    • /
    • v.20 no.6
    • /
    • pp.560-565
    • /
    • 1997
  • The physicochemical properties of melatonin (MT) in propylene glycol (PG) and 2-hydroxypropyl-.betha.-cyclodextrin $(2-HP{\beta}CD)$ vehicles were characterized. MT was endothermally decomposed as determined by differential scanning calorimetry (DSC). Melting point and heat of fusion obtained were $116.9{\pm}0.24^{\circ}C $.and $7249{\pm}217 cal/mol$., respectively. MT as received from a manufacture was very pure, at least 99.9%. The solubility of MT in PG solution increased slowly until reaching 40% PG and then steeply increased. Solubility of MT increased linearly as concentration of $2-HP{\beta}CD$ without PG INCREASED$(R^2=0.993)$. MT solubility in the mixtures of pg and $2-HP{\beta}CD$ also increased linearly but was less than the sum of its solubility in $2-HP{\beta}CD$ and PG individually. The MT solubility was low in water, simulated gastric or intestinal fluid but the highest in the mixture of PG(40v/v%) and $2-HP{\beta}CD$ (30w/v%) although efficiency of MT solubilization in $2-HP{\beta}CD$ decreased as the concentration of PG increased. MT was degraded in a fashion of the first order kinetics $(r^2>0.90)$. MT was unstable in strong acidic solution (HCl-NaCl buffer, pH 1.4) but relatively stable in other pH values of 4-10 at $70^{\circ}C$. In HCl-NaCl buffer, MT in 10% PG was more quickly degraded and then slowed dpwm at a higher concentration. However, the degradation rate constant of MT in 2-HP.betha.CD was not changed significantly when compared to the water. The current studies can be applied to the dosage formulations for the purpose of enhancing percutaneous absorption or bioavailability of MT.

  • PDF

A Study on the Preparation of UPE Resins with Different Glycol Molar Ratios and Their Physical Properties : 3. Estimation of Viscoelastic and Critical Surface Tension of UPE Liquid Resins (글리콜 몰비가 다른 불포화 폴리에스테르 수지의 제조 및 물성에 관한 연구 : 3. UPE 액상 수지의 임계표면장력 및 점탄성 평가)

  • 이상효;안승국;이장우
    • Polymer(Korea)
    • /
    • v.24 no.5
    • /
    • pp.589-598
    • /
    • 2000
  • In this study, various unsaturated polyester (UPE) resins were prepared from the condensation polymerization of mixtures of saturated (isophthalic acid : IPA) and unsaturated (maleic anhydride : MA) dibasic acids with propylene glycol (PG), neopentyl glycol (NPG). The critical surface tension (Υ$_{c}$) for the surface characteristics of a solid were estimated by Zisman plot, and the structure-property relationship was investigated by measuring the rheology of resins. The values of Υ$_{c}$ for glass of solid were 30.5 mNㆍm$^{-1}$ for UPE resin liquids. As the content of NPG in a PG/NPG glycol mixture increased, both the contact angle and the surface tension of the UPE resin liquids were found to decrease. The dynamic viscoelasticities of UPE resins with different glycol molar ratios were also measured. Shear rate dependence of viscosity and angular frequency dependence of storage, and loss modulus tended to decrease with increasing NPG content.

  • PDF

Electrochemical Behavior of Cathode Catalyst Layers Prepared with Propylene Glycol-based Nafion Ionomer Dispersion for PEMFC (프로필렌글리콜에 분산된 나피온 이오노머로 제조된 공기극 촉매층의 연료전지 성능 특성 연구)

  • Woo, Seunghee;Yang, Tae-Hyun;Park, Seok-Hee;Yim, Sung-Dae
    • Korean Chemical Engineering Research
    • /
    • v.57 no.4
    • /
    • pp.512-518
    • /
    • 2019
  • To develop a membrane electrode assembly (MEA) with lower Pt loading and higher performance in proton exchange membrane fuel cells (PEMFCs), it is an important research issue to understand interfacial structure of Pt/C catalyst and ionomer and design the catalyst layer structure. In this study, we prepared short-side-chain Nafion-based ionomer dispersion using propylene glycol (PG) as a solvent instead of water which is commonly used as a solvent for commercially available ionomers. Cathode catalyst layers with different ionomer content from 20 to 35 wt% were prepared using the ionomer dispersion for the fabrication of four different MEAs, and their fuel cell performance was evaluated. As the ionomer content increased to 35 wt%, the performance of the prepared MEAs increased proportionally, unlike the commercially available water-based ionomer, which exhibited an optimum at about 25 wt%. Small size micelles and slow evaporation of PG in the ionomer dispersion were effective in proton transfer by inducing the formation of a uniformly structured catalyst layer, but the low oxygen permeability problem of the PG-based ionomer film should be resolved to improve the MEA performance.