• Title/Summary/Keyword: propulsive

Search Result 240, Processing Time 0.02 seconds

A Study on Propulsion Performance of Underwater Ram-Jet with Optimized Nozzle Configuration (최적 노즐형상을 갖는 수중램제트의 추진성능에 관한 연구)

  • Kang, H.K.;Kim, Y.T.;Lee, Y.H.
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.34 no.4
    • /
    • pp.42-52
    • /
    • 1997
  • The basic principle of underwater ram-jet as a unique marine propulsion concept showing vary high cruise speed range(e. g. 80-100 knots) is the thrust production by the transfer of the potential energy of compressed gas to the operating liquid through kinetic mixing process. This paper is aimed to investigate the propulsive efficiency of the nozzle flow in underwater ram-jet at the speed of 80 knots for the buried type vessel. The basic assumption of the theoretical analysis is that mixture of water and air can be treated as incompressible gas. For an optimized nozzle configuration obtained from the performance analysis, preliminary data for performance evaluation are obtained and effects of nozzle inner wall friction, ambient temperature, ambient pressure, water density, gas velocity, bubble radius, flow velocity, diffuser area ratio, mass flow ratio and water velocity gradient are investigated.

  • PDF

Kinematic Comparisons of the Tsukahara Vault between a Top-level Athlete and Sublevel Collegiate Athletes

  • Park, Cheol-Hee;Kim, Young-Kwan;Back, Chang-Yei
    • Korean Journal of Applied Biomechanics
    • /
    • v.26 no.1
    • /
    • pp.71-82
    • /
    • 2016
  • Objective: The purpose of this study was to investigate kinematic comparisons of Tsukahara vault in gymnastics between a top-level athlete and sublevel collegiate athletes in order to obtain information on key biomechanical points for successful Tsukahara vaults. Methods: An Olympic gold medalist (height, 160 cm; weight, 52 kg; age, 25 years) and five sublevel collegiate gymnasts (height, $168.2{\pm}3.4cm$; weight, $59.6{\pm}3.1kg$; age, $23.2{\pm}1.6years$) participated in this study. They repeatedly performed Tsukahara vaults including one somersault. Fourteen motion-capturing cameras were used to collect the trajectories of 26 body markers during Tsukahara vaults. Event time, displacement and velocity of the center of mass, joint angles, the distance between the two hands on the horse, and averaged horizontal and vertical impact forces were calculated and compared. Results: The top-level athlete showed a larger range of motion (ROM) of the hip and knee joints compared to sublevel collegiate athletes during board contact. During horse contact, the top-level athlete had a narrow distance between the two hands with extended elbows and shoulders in order to produce a strong blocking force from the horse with a shorter contact time. At the moment of horse take-off, reactive hip extension of the top-level athlete enhanced propulsive take-off velocity and hip posture during post-flight phase. Conclusion: Even though a high velocity of the center of mass is important, the posture and interactive action during horse contact is crucial to post-flight performance and the advanced performance of Tsukahara vaults.

The Effects of Restricted Trunk Motion on the Performance of Maximum Vertical Jump (몸통 운동의 제약이 최대 수직점프의 수행에 미치는 영향)

  • Kim, Yong-Woon;Eun, Seon-Deok
    • Korean Journal of Applied Biomechanics
    • /
    • v.19 no.1
    • /
    • pp.27-36
    • /
    • 2009
  • The purpose of this study was to identify effects of restricted trunk motion on the performances of the maximum vertical jump. Ten healthy males performed normal countermovement jump(NJ) and control type of countermovement jump(CJ), in which subjects were required to restrict trunk motion as much as possible. The results showed 10% decreases of jumping height in CJ compared with NJ, which is primarily due to vertical velocity at take off. NJ with trunk motion produced significantly higher GRF than RJ, especially at the early part of propulsive phase, which resulted from increased moments on hip joint. And these were considered the main factors of performance enhancement in NJ. There were no significant differences in the mechanical outputs on knee and ankle joint between NJ and RJ. With trunk motion restricted, knee joint alternatively played a main role for propulsion, which is contrary on the normal jump that hip joint was highest contributor. And restricted trunk motion resulted in the changes of coordination pattern, knee-hip extension timing compared with normal proximal-distal sequence. In conclusion these results suggest that trunk motion is effective strategy for increasing performance of vertical jumping.

A Study on the Numerical Modeling of the Fish Behavior to the Model Net - Fitness Examination of Numerical Model by the Marine Fish - (모형 그물에 대한 어군행동의 수직 모델링에 관한 연구 - 해산어에 의한 수치 모델의 적합성 검토 -)

  • Jang, Ho-Yeong;Lee, Ju-Hui
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.34 no.2
    • /
    • pp.174-184
    • /
    • 1998
  • In order to accumulate fundamental. data for control of fishes’ behavior at the real fishing ground, the fitness of the numerical model for describing the behavior of fishes was examined by the marine fish. Mullet, Mugil cephalus were used as experimental fishes. The numerical model of fishes’ behavior presented in our earlier paper was modified on the vertical movement of fish school. For the comparision of parameters of the modified numerical model between mullet and rainbow trout, the estimated values of parameters were identified with dimension. The fitness of the modified numerical model was examined by the comparision between experiment and simulation on the several indexes represented by fishes’ swimming characteristics. The obtained result are summarized a follows : 1. The non-dimensional parameter a’ of propulsive force and kb’ of interactive force by the experiment without model net showed a similarity, but the non-dimensional parameter k sub(c’) of schooling force for rainbow trout was lager than one for mullet and the non-dimensional parameter k sub(w’) of repulsive force for mullet was lager than one for rainbow trout. 2. The non-dimensional parameter a’ and k sub(b’) for rainbow trout by the experiment with model net were a little lager than ones for mullet, but non-dimensional parameter k sub(c’) and k sub(w’) for mullet were lager than ones for rainbow trout. 3. The non-dimensional parameter k sub(c’) and k sub(b’) showed the largest and the smallest value among the non-dimensional parameters for rainbow trout and mullet, respectively. 4. The fitness of the modified numerical model was confirmed by means of the compulsion between experiment and simulation on the swimming trajectory of fishes, the mean distance of individual from wall, the mean swimming speed, the mean swimming depth and the mean distance between the nearest individuals. Especially, the similarity of mean swimming depth was improved by using the modified numerical model.

  • PDF

Performance Prediction of Liquid Rocket Thrust Chambers with Nonuniform Propellant Mixing (추진제의 비균일 혼합분포를 고려한 액체로켓 추력실의 성능 예측기법 개발)

  • 김성구;최환석;한영민;이광진
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.9
    • /
    • pp.82-88
    • /
    • 2006
  • In order to effectively reduce thermal loads on regenerative cooled walls, fuel cooling injectors and film cooling devices have often been employed. The present study has established a numerical methodology for prediction of performance and near-wall temperature distribution taking into account the nonuniform mixing due to these additional cooling devices. A correction procedure for main propulsive parameters has also been proposed based on comparison between prediction and experimental data. Under the computational framework of this study, the predicted results were in good agreement with hot-firing test data for a 30 tonf-class full-scale combustor at the design and off-design conditions. As a consequence, the present numerical method is expected to be useful for design and evaluation of regenerative cooled liquid rocket thrust chambers.

The Kinematical Analysis of female 500m Sprint Start in 2005 World Short Track speed Skating Championship (2005 세계 쇼트트랙 스피드 여자 500m 스피드 스케이팅 출발구간에 대한 운동학적 분석)

  • Lee, Chong-Hoon;Back, Jin-Ho
    • Korean Journal of Applied Biomechanics
    • /
    • v.15 no.4
    • /
    • pp.169-179
    • /
    • 2005
  • In the 500m short track speed skating, the matter of who reaches the first corner first can important factor since each competitor races with all speed from the start to the first line. A filed study was attempted to kinematical estimation six female foreign skaters, who participated in the 500m female final round competition, and two Korea skates during the World Short track Skating Championship. The three dimensional motion analysis with DLT method was executed using four video cameras for analyzing the actual competition situation. In point of analyzing the actual competition situation, it is expected that skaters and coaches the effective informations, and the following conclusions are drawn; The elapsed time by phase in start motion of the foreign skaters appeared shorter those of Korea skaters, so the start training of Korea skaters should be strengthed. Also the displacement of C.G in the foreign skaters appeared shorter displacement than those of Korea skaters. Especially in the starting position, the foreign skaters are superior to Korea skaters in displacement of first(left) and next following stroke(right). The velocity of C.G and maximum velocity of skate blade of foreign skaters art faster than those of Korea skaters. And the foreign skaters show the superior early velocity change. Both of leaning body angle, and left and knee angle of the foreign skaters lead to positive point of having the propulsive force in the early starting position. Observing in the most prominent feature of foreign and Korea skaters in start phase, foreign skaters skate quickly the third stroke. These features of Korea skaters would appear disadvantage of location selection in entering the coner course.

Hull-form optimization of KSUEZMAX to enhance resistance performance

  • Park, Jong-Heon;Choi, Jung-Eun;Chun, Ho-Hwan
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.1
    • /
    • pp.100-114
    • /
    • 2015
  • This paper deploys optimization techniques to obtain the optimum hull form of KSUEZMAX at the conditions of full-load draft and design speed. The processes have been carried out using a RaPID-HOP program. The bow and the stern hull-forms are optimized separately without altering neither, and the resulting versions of the two are then combined. Objective functions are the minimum values of wave-making and viscous pressure resistance coefficients for the bow and stern. Parametric modification functions for the bow hull-form variation are SAC shape, section shape (U-V type, DLWL type), bulb shape (bulb height and size); and those for the stern are SAC and section shape (U-V type, DLWL type). WAVIS version 1.3 code is used for the potential and the viscous-flow solver. Prior to the optimization, a parametric study has been conducted to observe the effects of design parameters on the objective functions. SQP has been applied for the optimization algorithm. The model tests have been conducted at a towing tank to evaluate the resistance performance of the optimized hull-form. It has been noted that the optimized hull-form brings 2.4% and 6.8% reduction in total and residual resistance coefficients compared to those of the original hull-form. The propulsive efficiency increases by 2.0% and the delivered power is reduced 3.7%, whereas the propeller rotating speed increases slightly by 0.41 rpm.

Self-propulsion Test and Analysis of Amphibious Armored Wheeled Vehicle with Propulsion System of POD Type Waterjet (전투 차량용 포드형 물 분사 추진장치의 모형시험 및 해석)

  • Byun, Tae-Young;Kim, Moon-Chan;Chun, Ho-Hwan;Kim, Jong-Hyun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.42 no.3
    • /
    • pp.197-204
    • /
    • 2005
  • A waterjet propulsion system has many advantages compared with a conventional screw propeller especially for amphibious armored wheeled vehicles because of a good maneuverability at low speed, good operation ability at shallow water, high thrust at low speed to aid maneuverability and exit from water, etc. The POD type waterjet is adequate for the present wheeled vehicle because the weight is lighter and L/B is longer than the conventional armored amphibious vehicle. Resistance and self-propulsion tests with a 1/3.5-scale model are conducted at PNU towing tank. Based on these measurements, the performance is analyzed according to ITTC 96 standard analysis method and also according to the conventional propulsive factor analysis method. Based on these two methods, the full-scale effective and delivered powers of amphibious armored wheeled vehicle are estimated. This paper emphasizes the analysis method of model test of the waterjet propulsion system for a amphibious armored wheeled vehicle and the model test technique together with the comparison of the two analysis methods.

The Interlimb Coordination During Movement Initiation From a Quiet Stance: Manipulation of Swing Limb Kinetics and Kinematics -A Preliminary Study

  • Kim, Hyeong-Dong;Yoon, Bum-Chull
    • Physical Therapy Korea
    • /
    • v.13 no.4
    • /
    • pp.79-86
    • /
    • 2006
  • The purpose of the current experiment was to describe interlimb coordination when swing limb conditions are being manipulated by constraining step length or by adding a 5 or 10 pound weight to the swing limb distally. Subjects were asked to begin walking with the right limb to land on the primary target (normal step length) that is 10 cm in diameter. However, if, during movement, the light was illuminated, then the subject had to step on one of the secondary targets (long and short step length). These three step length conditions were repeated while wearing a 5 pound ankle weight and then when wearing a 10 pound ankle weight. Ground reaction force (GRF) data indicated that there were changes in the forces and slopes of the swing and stance Fx GRFs. Long stepping subjects had to increase the propulsive force required to increase step length. Consequently, swing and stance toe-off greatly increased in the long step length condition. Short step length subjects had to adequately adjust step length, which decreased the speed of gait initiation. Loading the swing limb decreased the force and slope of the swing limb. Swing and stance toe-off was longest for the long step length condition, but there was a small difference of temporal events between no weight and weight condition. It appears that subjects modulated GRFs and temporal events differently to achieve the peak acceleration force of the swing and stance limb in response to different tasks. The findings from the current study provide preliminary data, which can be used to further investigate how we modulate forces during voluntary movement from a quiet stance. This information may be important if we are to use this or a similar task to evaluate gait patterns of the elderly and patient populations.

  • PDF

The Effect of Gas Thermochemical Model on the Flowfield of Supersonic Rocket in Propulsive Flight (기체 열화학 모델이 연소 비행하는 초음속 로켓 유동장에 미치는 영향)

  • 최환석
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.6 no.1
    • /
    • pp.12-20
    • /
    • 2002
  • An integrated analysis of kerosine/LOX based KSR-III rocket body/plume flowfield has been performed. The analysis has been executed employing three kind of gas thermo-chemical models including calorically perfect gas, multiple species chemically reacting gas, and chemically frozen gas models and their effect on rocket flowfield has been accessed to provide the most appropriate gas thermo-chemical model which meets a specific purpose of performing rocket body and plume analysis. The finite-rate chemically reacting flow solution exhibited higher temperature throughout the flowfield than other gas models due to the increased combustion gas temperature caused by the chemical reactions within the nozzle. All the reactions were dominated only in the shear layer and behind the barrel shock reflection region where the gas temperature is high and the effect of finite-rate chemical reactions on the flowfield was found to be minor. However, the present plume computation including finite-rate chemical reactions revealed major reactions occurring in the plume and their reaction mechanisms and as well.