• Title/Summary/Keyword: propulsive

Search Result 240, Processing Time 0.028 seconds

Navier-Stokes Computations of Supersonic Flow over Missile Afterbodies Containing a Centered Propulsive Jet (Navier-Stokes 방정식을 이용한 초음속 제트 추진 비행체 후방의 유동해석)

  • 윤병국;정명균
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.2
    • /
    • pp.356-368
    • /
    • 1992
  • The strongly interactive flow field near a missile afterbody containing a centered exhaust jet is numerically investigated. The thin shear layer and full formulation of compressible, Reynolds I averaged Navier-Stokes equations are solved. A time-dependent implicit numericals algorithm is used to obtain solution for a variety of flow conditions. Turbulence closure is implemented by the Baldwin-Lomax algebraic eddy viscosity model. An adaptive grid technique is adopted to resolve flow regimes with large gradients and to improve the accuracy and efficiency of the computation, Numerical results show good agreemement with experimental data in all regimes.

The Influence of Nonlinear Elements on Propulsive Energy Loss Related to Automatic Steering of Ships (자동조타 시스템의 비선형 요소가 선박의 추진 에너지 손실량에 미치는 영향)

  • Lee, Gyoung-Woo;Sohn, Kyoung-Ho;Yoon, Soon-Dong
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 1998.04a
    • /
    • pp.64-74
    • /
    • 1998
  • 본 연구에서는 선박 자동조타시스템의 비선형 요소가 추진 에너지 손실량에 미치는 영향을 정량적으로 평가, 해석하였다. 대양을 자동조타로써 보침 항해중인 선박의 자동조타시스템은 크게 선형 및 비선형요소로 나눌 수있는데, 각 요소들중, 특히 시스템 내부에 인위적으로 또는 불가피하게 설치되어 있는 비선형요소들의 영향은 매우 크다. 본 연구에서는 오토파일럿의 비선형 제어 상수가 전체 시스템의 안정성 또는 추진 에너지 손실의 증감에 미치는 영향을 조사하였다. 본 연구의 수치계산에 이용한 선박은 소형 어선 1척과 대형 광석운반석 1척이며 평균, 풍속 10m/sec 의 대표적 해상상태의 풍·파랑 외란 조건하에서 추지 에너지 손실의 지표인 성능평가지수를 계산하였다. 그리고 수치계산 결과에 대해서도 논하였다.

  • PDF

Numerical study of Double Hydrofoil motions for thrust and propulsive efficiency (추력 및 효율 향상을 위한 Double Hydrofoil 움직임에 대한 수치해석 연구)

  • Kim, Sue-Jin;Han, Jun-Hee;Lee, Do-Hyung
    • The KSFM Journal of Fluid Machinery
    • /
    • v.17 no.4
    • /
    • pp.59-70
    • /
    • 2014
  • The motion of birds and insects have been studied and applied to MAV(Micro Air Vehicle) and AUV(Autonomous Underwater Vehicle). Most of AUV research is focused on shape and motion of single hydrofoil. However, double hydrofoil system is mostly used in real physics. This system shows completely different hydrodynamic characteristic to single hydrofoil because of wake interaction. The goal of this study is define the trajectory of wake interaction in double hydrofoil system. Moreover, trust and efficiency of various combined motion will be demonstrated. Symmetry airfoil is used for analysis an hydrodynamic characteristic. Forward wing's plunging and pitching motion is fixed, hide wing's Heaving ratio, Pitch phase shift from forward plunging and Heaving shift is changed. This study provide necessary basic data of motion optimization for double hydrofoil system.

Physiological Changes with Aging (노화(Aging)에 따른 생리학적 변화)

  • Kim Suhn-Yeop;Yi Seung-Ju
    • The Journal of Korean Physical Therapy
    • /
    • v.5 no.1
    • /
    • pp.79-87
    • /
    • 1993
  • The purpose of this literature review was to identify the physiological changes with aging. The results of this renew were to follows : We have seen a wide variety of such changes in the cells and in all organ systems. 1. At least 40 percent of people over 65 will die of cardiac disease, 15 percent of cerebrovascular disease, and possibly another 5 percent of other types of vascular impairment. 2. The increase rigidity of the thoracic wall and the decreased strength of the expiratory muscles decrease the propulsive effectiveness of the cough. 3. The density of capillaries per motor units is decreased. 4. Starting before age 40 in both sexes there is a shift from an increase in bone mass to a progressive decrease. 5. Histologic studies show a lim age-correlated decrease in the number of Pacini's. Merkel's, and Meissner's corpuscles.

  • PDF

COMS BIPROPELLANT PROPULSION SYSTEM (COMS 특별세션)

  • Han, Cho-Young;Park, Eung-Sik;Baek, Myung-Jin;Lee, Ho-Hyung
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.41-44
    • /
    • 2007
  • Korea Aerospace Research Institute (KARI) has jointly developed a bipropellant propulsion system for Communication, Ocean and Meteorological Satellite (COMS) with EADS Astrium in UK. The technology relevant to a bipropellant propulsion system is quite new one in Korea, which is transferred for the first time, with development of COMS propulsion system. It hasn't ever attempted before, and hasn't got any general idea itself as well, in Korea. The COMS Chemical Propulsion System (CPS) is designed to perform both the orbital injection function, to take the spacecraft from transfer orbit to Geostationary Earth Orbit (GEO), and all on-station propulsive functions throughout the lifetime of the satellite. All station keeping manoeuvres are performed using the CPS. The design, manufacture and testing of COMS CPS are addressed in this paper. Feasibility of COMS CPS applicable to the other advanced mission is investigated as well.

  • PDF

A Parametric Investigation Into the Aeroelasticity of Composite Helicopter Rotor Blades in Forward Flight (전진비행시 복합재료 헬리콥터 회전익의 공탄성에 대한 파라미터 연구)

  • 정성남;김경남;김승조
    • Journal of KSNVE
    • /
    • v.7 no.5
    • /
    • pp.819-826
    • /
    • 1997
  • The finite element analyses of a composite hingeless rotor blade in forward flight have been performed to investigate the influence of blade design parameters on the blade stability. The blade structure is represented by a single cell composite box-beam and its nonclassical effects such as transverse shear and torsion-related warping are considered. The nonlinear periodic differential equations of motion are obtained by moderate deflection beam theory and finite element method based on Hamilton principle. Aerodynamic forces are calculated using the quasi-steady strip theiry with compressibility and reverse flow effects. The coupling effects between the rotor blade and the fuselage are included in a free flight propulsive trim analysis. Damping values are calculated by using the Floquet transition matrix theory from the linearized equations perturbed at equilibrium position of the blade. The aeroelastic results were compared with an alternative analytic approch, and they showed good correlation with each other. Some parametric investigations for the helicopter design variables, such as pretwist and precone angles are carried out to know the aeroelastic behavior of the rotor.

  • PDF

A Numerical Analysis on the Vibration Characteristics of Rotating Composite Blades (회전하는 복합재료 블레이드의 진동특성에 대한 수치해석)

  • Kee, Young-Jung;Song, Keun-Woong;Kim, Deog-Kwan;Shim, Jeong-Wook
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.300-303
    • /
    • 2006
  • The rotor blade of a helicopter is the key structural units and provides three components such as vertical lifting force, horizontal propulsive force and control force. With advancements in aerospace technology, composite materials have been widely used in lightweight structures. In addition, composites show great potential on the design of rotor blades due to the advantages of strength, durability and weight of the materials. In the operational condition of a helicopter, it is required the vibration characteristics of the rotating blades for avoiding resonance and analysis of efficient performance prediction et al. In this study, the CAMRAD-II is used for analyzing the vibration characteristics of rotating composite blades. The effects of rotating speed and collective angles are investigated. Also, the numerical results are compared with experimental data.

  • PDF

Aerodynamic Analysis of a Rectangular Wing in Flapping with Lead-Lag Motion using Unsteady VLM (직사각형 평판날개의 리드래그 운동이 조합된 날개짓에 대한 비정상 VLM 공력 해석)

  • Kim, Woo-Jin;Kim, Hark-Bong
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.14 no.2
    • /
    • pp.39-44
    • /
    • 2006
  • The unsteady vortex lattice method is used to model lead-lag in flapping motions of a rectangular flat plate wing. The results for plunging and pitching motions were compared with the limited experimental results available and other numerical methods. They show that the method is capable of simulating many of the features of complex flapping flight. The lift, thrust and propulsive efficiency of a rectangular flat plate wing have been calculated for various lead-lag motion and reduced frequency with an amplitude of flapping angle(20o). To describe a motion profile of wing tip such as elliptic, line and circle, the phase difference of flapping and lead-lag motion was changed. And the effects of the motion profile on the aerodynamic characteristics of the flapping wing are discussed by examination of their trends.

  • PDF

Hull Form Development for an AFRAMAX Tanker with a Composite Stern Frameline Concept

  • Kim, Ho-chung;Lee, Chun-ju;Kim, Su-hyung
    • Selected Papers of The Society of Naval Architects of Korea
    • /
    • v.1 no.1
    • /
    • pp.65-75
    • /
    • 1993
  • Hull form development for an AFRAMAX tanker characterized by the form parameters of $C_B\simeq0.8$, $L/B\simeq5.5$, $B/T\simeq3.5$, han been carried out by the application of ‘Composite Stern Frameline Concept’. The viscous resistance of the new form was much smaller than that of the conventional form. Form factor of the new form was only 0.18 compared to 0.30 for the conventional hull form, Nevertheless the propulsive efficiency was slightly lower and thus the required propulsion power was smaller by 5~6% at both full load and ballast condition. In addition, it is confirmed that introduction of the form factor method such as ITTC’78 method is highly advisable because there is a great risk of the underperdicting full scale resistance of the hull form whose form the extrapolation of moel resistance to full scale is to be based on Froude method with the correlation allowances usually applied to conventional hull forms.

  • PDF

Thrust estimation of a flapping foil attached to an elastic plate using multiple regression analysis

  • Kumar, Rupesh;Shin, Hyunkyoungm
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.11 no.2
    • /
    • pp.828-834
    • /
    • 2019
  • Researchers have previously proven that the flapping motion of the hydrofoil can convert wave energy into propulsive energy. However, the estimation of thrust forces generated by the flapping foil placed in waves remains a challenging task for ocean engineers owing to the complex dynamics and uncertainties involved. In this study, the flapping foil system consists of a rigid NACA0015 section undergoing harmonic flapping motion and a passively actuated elastic flat plate attached to the leading edge of the rigid foil. We have experimentally measured the thrust force generated due to the flapping motion of a rigid foil attached to an elastic plate in a wave flume, and the effects of the elastic plates have been discussed in detail. Furthermore, an empirical formula was introduced to predict the thrust force of a flapping foil based on our experimental results using multiple regression analysis.