• Title/Summary/Keyword: propulsive

Search Result 240, Processing Time 0.025 seconds

Ship Motion and Propulsive Performance of a Container Ship in Regular Head Waves (콘테이너선의 피랑중 운동성능 저항증가 및 추진성능에 관한 연구)

  • Yang, Seung-Il;Kim, Eun-Chan;Hong, Seok-Won;Lee, Sang-Mu
    • 한국기계연구소 소보
    • /
    • s.10
    • /
    • pp.49-62
    • /
    • 1983
  • A series of model tests on a container ship in waves was executed at the Experimental Towing Tank of Ship Research Station, KIMM. This paper presents the results of resistance, self-propulsion, propeller open-water and ship motion tests in regular head waves. Firstly, the experimental results of ship motion measured on a towed model and a self-propelled model were compared with those of Japanese results showing fairly good agreements. Secondly, the results of resistance and propulsion tests were analyzed and the data of added resistance, thrust increase, torque increase, revolution increase and self-propulsion factors in waves were presented. Also the diffraction force measured on a fixed model in waves was analyzed. Finally, this report shows the propeller characteristics in calm water based on propeller immersion and in regular waves based on wave length.

  • PDF

A Study on the Evaluation of Automatic Steering System of Ships in Folowing Seas (추사파중을 항행하는 선박의 자동조타 시스템 평가에 관한 연구)

  • 이경우;손경호
    • Journal of the Korean Institute of Navigation
    • /
    • v.25 no.4
    • /
    • pp.407-415
    • /
    • 2001
  • In the present study, irregular disturbances to ship dynamics is proposed, where irregular disturbances implying irregular wave and the fluctuating component of wind for the evaluation of automatic steering system of ship in following seas. Prediction method based on the principle of linear superposition. Irregular wave disturbances in following seas is calculated by frequency variation method. The mathematical model of each element of an automatic steering system is derived, which takes account of a few non-linear mechanisms. PD(Proportional-Derivative) controller and low-pass filter with a weather adjustment are adopted to modelling the characteristics of an autopilot. Performance index is introduced from the viewpoint of energy saving, which derived from the concept of energy loss on ship propulsion. Finally, the present methods are applied to two typical types of ship ; an ore carrier and a fishing boat. The various effects of control constants of autopilot on propulsive energy loss are investigated

  • PDF

Anatomy and physiology of swallowing process (삼킴(연하) 과정에 관련된 해부생리학적 고찰)

  • Lee, Jina
    • The Journal of the Korean dental association
    • /
    • v.56 no.5
    • /
    • pp.278-286
    • /
    • 2018
  • Food intake and swallowing are complicated and intriguing series of movements involving voluntary and involuntary activities of cranial and spinal nerves and muscles. They have two most important functions, that is, food passage from the oral cavity to stomach and airway protection. Tongue, buccinators, and hyoid bone and its muscular attachments are anatomic structures for swallowing of special interests. The swallowing process of liquid is commonly divided into oral preparatory, oral propulsive, pharyngeal, and esophageal stages according to the location of the bolus. The movement of the food in the oral cavity and to the oropharynx differs between eating solid food and drinking liquid.

  • PDF

Numerical simulation of cavitating flow past cylinders

  • Park, Warn-Gyu;Koo, Tae-Kyoung;Jung, Chul-Min;Lee, Kurn-Chul
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03a
    • /
    • pp.327-333
    • /
    • 2008
  • The cavitating flow simulation is of practical importance for many engineering systems, such as marine propellers, pump impellers, nozzles, injectors, torpedoes, etc. The present work has developed a base code for simulating cavitating flows past cylinders and hydrofoils. The governing equation is the Navier-Stokes equation based on homogeneous mixture model. The momentum and energy equation is in the mixture phase while the continuity equation is solved in liquid and vapor phase, separately. The solver employs an implicit preconditioning algorithm in curvilinear coordinates. The computations have been carried out for the cylinders with spherical, 1- and 0-caliber forebody and hydrofoil of ALE and NACA cross-section and, then, compared with experiments and other numerical results. Fairly good agreements with experiments and numerical results have been achieved. The present base code has shown the feasibility to solve the cavitating flow past supercavitating torpedo after the improvement for compressibility effects and interactions with hot exhaust gas of propulsive rocket.

  • PDF

Structural Analysis of Thruster Heat Shield for Satellite Propulsion System (인공위성 추진시스템용 추력기 열차폐막의 구조해석)

  • Lee, Kyun-Ho;Kim, Jeong-Soo;Han, Cho-Young
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.468-472
    • /
    • 2003
  • MRE-1 dual thruster module(DTM) which will be installed to the present under development KOMPSAT(Korea Multi-Purpose Satellite) can provide reliable and cost-effective means of propulsive control for attitude and maneuvering control system. Thruster heat shield, one of the main components of DTM, is designed to intercept the radiative heat exchange between thruster and satellite during firing. The inside diameter of the current configuration will be decreased a little compared with that of the previous one due to manufacturing method change. Therefore, the possibility of interference between thruster and heat shield due to configuration change is investigated through structural analysis and their results are described in this paper.

  • PDF

Numerical simulation of cavitating flow past cylinders

  • Park, Warn-Gyu;Koo, Tae-Kyoung;Jung, Chul-Min;Lee, Kurn-Chul
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.327-333
    • /
    • 2008
  • The cavitating flow simulation is of practical importance for many engineering systems, such as marine propellers, pump impellers, nozzles, injectors, torpedoes, etc. The present work has developed a base code for simulating cavitating flows past cylinders and hydrofoils. The governing equation is the Navier-Stokes equation based on homogeneous mixture model. The momentum and energy equation is in the mixture phase while the continuity equation is solved in liquid and vapor phase, separately. The solver employs an implicit preconditioning algorithm in curvilinear coordinates. The computations have been carried out for the cylinders with spherical, 1- and 0-caliber forebody and hydrofoil of ALE and NACA cross-section and, then, compared with experiments and other numerical results. Fairly good agreements with experiments and numerical results have been achieved. The present base code has shown the feasibility to solve the cavitating flow past supercavitating torpedo after the improvement for compressibility effects and interactions with hot exhaust gas of propulsive rocket.

  • PDF

The Study of Aerodynamic Characteristics for the Ram-jet Projectile (렘제트탄의 공기역학적 특성 연구)

  • Park S. J.;Shin P. K.;Lee T. S.;Kim K. R.;Park J. H.;Kim Y. G.
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.751-754
    • /
    • 2002
  • The SFU(Solid Fuel Ram-Jet) propulsion is attractive for projectiles because of the combination of high propulsive performance and low system complexity more than conventional projectiles. The Objective of this research was to characterize the inlet aerodynamic characteristics (centerbody & pilot type) in SFRJ. Diffuser static pressure & combustion chamber pressure was tested and the AoA was changed $0^{\circ}\;and\;4^{\circ}$ at Mach number of 3.0 for performance estimate. The performance study of inlet was carried out with the Schlieren system and Supersonic cold-flow system. A Computational fluid dynamic solution is applied internal flow of inlet and the solutions are compared with experimental results.

  • PDF

Study on the Design of Pre-Swirl Stator Vanes (전류고정날개 설계에 대한 연구)

  • Choi J. E.;Seo H. W.;Chung S. H.
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.177-180
    • /
    • 2002
  • The study on the design of pre-swirl stator vanes is performed. The pre-swirl stator vanes is an energy-saving device to improve propulsive performance by providing pre-swirl to the propeller inflow. The theoretical background and the design conditions for pre-swirl stator vanes are presented. The flow characteristics around the pre-swirl stator vanes attached ship hull are analyzed through the experimental method. The technique to determine the optimum location, angle and the number of stator vane is investigated and applied it to 310,000 TBW VLCC The flow velocities are measured using 5-hole Pilot tubes at the condition with and without a propeller.

  • PDF

The Effects of Surface Roughness on Heat Transfer in The Reciprocating Channel (왕복운동을하는 채널에서 표면거칠기가 열전달에 미치는 영향)

  • Ahn Soo Whan;Son Kang Pil
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.333-336
    • /
    • 2002
  • This paper describes a detailed experimental Investigation of heat transfer In a reciprocating rectangular channel fitted with rib structures with particular reference to the design of a piston for marine propulsive diesel engine. The parametric test matrix involves Reynolds number, reciprocating frequency, and reciprocating radius, respectively, in the ranges, $1,000\;{\~}\;6,000,\;1.7\;{\~}\;2.5\;Hz,\;and\;7\;{\~}\;15cm$ with four different rib arrangements. The rib arrangements have considerable influences on the heat transfer in the reciprocating channel due to the modified vortex flow structure. The experimental data confirm that the increases in the heat transfer can be seen in order of Case (a), Case (d), Case (c), and Case (b)

  • PDF

Effect of Pitch Angle Variations On Performance Of Pod Type Waterjet (로터 피치각 변화에 따른 Pod형 워터제트 성능비교)

  • Kim J. H.;Park W. G.;Chun H. H.;Kim M. C.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2005.04a
    • /
    • pp.30-34
    • /
    • 2005
  • 고속 선박을 추진하는 한 방법으로 널리 사용되는 물분사 추진은 물을 내부 덕트로 빨아들여 임펠러로 물을 가속시켜 노즐을 통해 분사시킴으로써 입출구의 운동량차이에 의해 추력을 얻는 추진장치이다. 선박의 목적에 따라 사용되는 다양한 형태의 물분사 추진기의 개발을 위하여 모형실험을 통하여 그 성능을 검증하는 부분에서 로터의 피치각 변화에 따른 추진기의 성능 실험을 하는 것은 많은 비용과 시간이 따른다. 따라서 이러한 문제를 해결하기 위하여 본 연구에서는 추진기 내부의 유동장을 4가지 피치각에 따라 추진력을 3차원 비압축성 Navier-Stokes 방정식을 이용하여 해석하였다. 로터의 회전을 고려하여 슬라이딩 다중 격자기법을 적용하였고 추력계수, 토크계수, 그리고 모멘텀을 해석 결과와 비교 분석을 통하여 추진기의 성능과 효율을 추정하였다.

  • PDF