• Title/Summary/Keyword: proportional-integral-derivative controller

Search Result 171, Processing Time 0.031 seconds

EA-based Tuning of a PID Controller with an Anti-windup Scheme (안티와인드업 기법을 가지는 PID 제어기의 EA 기반 동조)

  • Jin, Gang-Gyoo;Park, Dong-Jin
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.10
    • /
    • pp.867-872
    • /
    • 2013
  • Many practical processes in industry have nonlinearities of some forms. One commonly encountered form is actuator saturation which can cause a detrimental effect known as integrator windup. Therefore, a strategy of attenuating the effects of integrator windup is required to guarantee the stability and performance of the overall control system. In this paper, optimal tuning of a PID (Proportional-Integral-Derivative) controller with an anti-windup scheme is presented to enhance the tracking performance of the PID control system in the presence of the actuator saturation. First, we investigate effective anti-windup schemes. Then, the parameters of both the PID controller and the anti-windup scheme are optimally tuned by an EA (Evolutionary Algorithm) such as the IAE (Integral of Absolute Error) is minimized. A set of simulation works on two high-order processes demonstrates the benefit of the proposed method.

3-Dimensional FUZZY-PID Controller for Robust Fine Control of Nonlinear System (비선형(非線形) 시스템의 강인(强靭)한 미세제어(微細制御)를 위한 3-D FUZZY-PID 제어기(制御器)의 설계(設計))

  • Lee, Joo-Hoon;Hong, Suk-Kyo
    • Proceedings of the KIEE Conference
    • /
    • 1992.07a
    • /
    • pp.404-407
    • /
    • 1992
  • In this thesis, the algorithm of Fuzzy Logic Control(FLC) is applied to the Nonlinear system to implement a system response. Proportional-Integral-Derivative(PID) controller is also used to control the various systems. Look-up table is applied to decide the control input, and the other look-up table is added for saving memories and inference time. Generally, FLC input variables are error(E) and error derivative($\Delta$E). In this algorithm. another Input variable error's second derivative($\Delta^2$E) is added for Robust Fine control.

  • PDF

On the Design of an Effective Lead/Lag Controller for DC Motors (직류모터를 위한 효과적인 Lead/Lag 제어기 설계에 관한 연구)

  • Kim, Wang-Sun;Lee, Byoung-Hoon;Won, Dae-Ho;Yang, Yeon-Mo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.05a
    • /
    • pp.959-962
    • /
    • 2010
  • There are a lot of methods available in designing PID(Proportional-Integral-Derivative) and Lead/Lag controllers in the industrial field of technology because of their useful advantages such as simplicity and robustness. In an early stage of development process, a computational simulation approach is a very efficient tool for the designs of the controllers. Thus, in this paper we propose a cost-effective, and practically efficient. The PID and Lead/Lag controllers. To show the effectiveness of the proposed Lead/Lag controller, we compare and contrast of the simulation results of each controller with the Matlab simulator. Although we have only considered the DC motors for the controllers, but it could be extended in future developments to more complex plants. As a result, the proposed frameworks could be used to solve industrial problems such as a reduction in development cycle time and minimizing system errors.

  • PDF

A Model reference adaptive speed control of marine diesel engine by fusion of PID controller and fuzzy controller

  • Yoo, Heui-Han
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.7
    • /
    • pp.791-799
    • /
    • 2006
  • The aim of this paper is to design an adaptive speed control system of a marine diesel engine by fusion of hard computing based proportional integral derivative (PID) control and soft computing based fuzzy control methods. The model of a marine diesel engine is considered as a typical non oscillatory second order system. When its model and the actual marine diesel engine ate not matched, it is hard to control the speed of the marine diesel engine. Therefore, this paper proposes two methods in order to obtain the speed control characteristics of a marine diesel engine. One is an efficient method to determine the PID control parameters of the nominal model of a marine diesel engine. Second is a reference adaptive speed control method that uses a fuzzy controller and derivative operator for tracking the nominal model of the marine diesel engine. It was found that the proposed PID parameters adjustment method is better than the Ziegler & Nichols' method, and that a model reference adaptive control is superior to using only PID controller. The improved control method proposed here, could be applied to other systems when a model of a system does not match the actual system.

Design of optimal PID controller for the reverse osmosis using teacher-learner-based-optimization

  • Rathore, Natwar S.;Singh, V.P.
    • Membrane and Water Treatment
    • /
    • v.9 no.2
    • /
    • pp.129-136
    • /
    • 2018
  • In this contribution, the control of multivariable reverse osmosis (RO) desalination plant using proportional-integral-derivative (PID) controllers is presented. First, feed-forward compensators are designed using simplified decoupling method and then the PID controllers are tuned for flux (flow-rate) and conductivity (salinity). The tuning of PID controllers is accomplished by minimization of the integral of squared error (ISE). The ISEs are minimized using a recently proposed algorithm named as teacher-learner-based-optimization (TLBO). TLBO algorithm is used due to being simple and being free from algorithm-specific parameters. A comparative analysis is carried out to prove the supremacy of TLBO algorithm over other state-of-art algorithms like particle swarm optimization (PSO), artificial bee colony (ABC) and differential evolution (DE). The simulation results and comparisons show that the purposed method performs better in terms of performance and can successfully be applied for tuning of PID controllers for RO desalination plants.

Design of a Fuzzy P+ID controller for brushless DC motor speed control

  • Kim, Young-Sik;Kim, Sung-Joong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.627-630
    • /
    • 2004
  • The PID type controller has been widely used in industrial application due to its simply control structure, ease of design, and inexpensive cost. However, control performance of the PID type controller suffers greatly from high uncertainty and nonlinearity of the system, large disturbances and so on. This paper presents a hybrid fuzzy logic proportional plus conventional integral derivative controller (fuzzy P+ID). In comparison with a conventional PID controller, only one additional parameter has to be adjusted to tune the fuzzy P+ID controller. In this case, the stability of a system remains unchanged after the PID controller is replaced by the fuzzy P+ID controller without modifying the original controller parameters. Finally, the proposed hybrid fuzzy P+ID controller is applied to BLDC motor drive. Simulation results demonstrated that the control performance of the proposed controller is better than that of the conventional controller.

  • PDF

Analysis and Implementation of ANFIS-based Rotor Position Controller for BLDC Motors

  • Navaneethakkannan, C.;Sudha, M.
    • Journal of Power Electronics
    • /
    • v.16 no.2
    • /
    • pp.564-571
    • /
    • 2016
  • This study proposes an adaptive neuro-fuzzy inference system (ANFIS)-based rotor position controller for brushless direct current (BLDC) motors to improve the control performance of the drive under transient and steady-state conditions. The dynamic response of a BLDC motor to the proposed ANFIS controller is considered as standard reference input. The effectiveness of the proposed controller is compared with that of the proportional integral derivative (PID) controller and fuzzy PID controller. The proposed controller solves the problem of nonlinearities and uncertainties caused by the reference input changes of BLDC motors and guarantees a fast and accurate dynamic response with an outstanding steady-state performance. Furthermore, the ANFIS controller provides low torque ripples and high starting torque. The detailed study includes a MATLAB-based simulation and an experimental prototype to illustrate the feasibility of the proposed topology.

Design of a Fuzzy P+ID controller for brushless DC motor speed control (BLDCM 의 속도 제어를 위한 퍼지 P+ID 제어기 설계)

  • Kim, Young-Sik;Lee, Chang-Goo;Kim, Sung-Joong
    • Proceedings of the KIEE Conference
    • /
    • 2002.07d
    • /
    • pp.2161-2163
    • /
    • 2002
  • The PID type controller has been widely used in industrial application doc to its simply control structure, ease of design and inexpensive cost. However control performance of the PID type controller suffers greatly from high uncertainty and nonlinearity of the system, large disturbances and so on. This paper presents a hybrid fuzzy logic proportional plus conventional integral derivative controller (Fuzzy P+ID). In comparison with a conventional PID controller, only one additional parameter has to be adjusted to tune the Fuzzy P+ID controller. In this case, the stability of a system remains unchanged after the PID controller is replaced by the Fuzzy P+ID controller without modifying the original controller parameters. Finally, the proposed hybrid Fuazy P+ID controller is applied to BLDC motor drive. Simulation results demonstrated that the control performance of the proposed controlled is better than that of the conventional controller.

  • PDF

Mamdani Fuzzy PID Controller for Processes with Small Dead Times

  • Jongkol, Ngamwiwit;Choi, Byoung-Wook
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.45.1-45
    • /
    • 2001
  • This paper proposes a Mamdani fuzzy PID controller for controlling a process with small dead time. The controller composes of a parallel structure of fuzzy PI controller and fuzzy PD controller. Each controller has two inputs, error and change of error. Hence, the control signal of the proposed controller is the average value of the output of the fuzzy PI and PD controllers. The Mamdani fuzzy PID controller is easily to be adjusted to meet the desired control system performances both in transient state and steady state. The simulation results of the proposed Mamdani fuzzy PID controller by using the same parameters (proportional gain, integral time and derivative time) as the conventional PID controller are shown. The response of the Mamdani fuzzy PID control system is faster than the conventional PID control system. Both system responses have ...

  • PDF

Neural Network based Fuzzy Type PID Controller Design (신경 회로망 기반 퍼지형 PID 제어기 설계)

  • 임정흠;권정진;이창구
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.86-86
    • /
    • 2000
  • This paper describes a neural network based fuzzy type PID control scheme. The PID controller is being widely used in industrial applications. however, it is difficult to determine the appropriate PID gains for (he nonlinear system control. In this paper, we re-analyzed the fuzzy controller as conventional PID controller structure, and proposed a neural network based fuzzy type PID controller whose scaling factors were adjusted automatically. The value of initial scaling factors of the proposed controller were determined on the basis of the conventional PID controller parameters tuning methods and then they were adjusted by using neural network control techniques. Proposed controller was simple in structure and computational burden was small so that on-line adaptation was easy to apply to. The result of practical experiment on the magnetic levitation system, which is known to be hard nonlinear, showed the proposed controller's excellent performance.

  • PDF