• 제목/요약/키워드: proportional-integral-derivative controller

검색결과 172건 처리시간 0.045초

회전운동 제어시스템을 위한 고성능 추적제어기의 설계 (High-Performance Tracking Controller Design for Rotary Motion Control System)

  • 김영덕;박수현;류성현;송철기;이호성
    • 한국기계가공학회지
    • /
    • 제20권11호
    • /
    • pp.43-51
    • /
    • 2021
  • A robust tracking controller design was developed for a rotary motion control system. The friction force versus the angular velocity was measured and modeled as a combination of linear and nonlinear components. By adding a model-based friction compensator to a nominal proportional-integral-derivative controller, it was possible to build a simulated control system model that agreed well with the experimental results. A zero-phase error tracking controller was selected as the feedforward tracking controller and implemented based on the estimated closed-loop transfer function. To provide robustness against external disturbances and modeling uncertainties, a disturbance observer was added in the position feedback loop. The performance improvement of the overall tracking controller structure was verified through simulations and experiments.

Servo control strategy for uni-axial shake tables using long short-term memory networks

  • Pei-Ching Chen;Kui-Xing Lai
    • Smart Structures and Systems
    • /
    • 제32권6호
    • /
    • pp.359-369
    • /
    • 2023
  • Servo-motor driven uniaxial shake tables have been widely used for education and research purposes in earthquake engineering. These shake tables are mostly displacement-controlled by a digital proportional-integral-derivative (PID) controller; however, accurate reproduction of acceleration time histories is not guaranteed. In this study, a control strategy is proposed and verified for uniaxial shake tables driven by a servo-motor. This strategy incorporates a deep-learning algorithm named Long Short-Term Memory (LSTM) network into a displacement PID feedback controller. The LSTM controller is trained by using a large number of experimental data of a self-made servo-motor driven uniaxial shake table. After the training is completed, the LSTM controller is implemented for directly generating the command voltage for the servo motor to drive the shake table. Meanwhile, a displacement PID controller is tuned and implemented close to the LSTM controller to prevent the shake table from permanent drift. The control strategy is named the LSTM-PID control scheme. Experimental results demonstrate that the proposed LSTM-PID improves the acceleration tracking performance of the uniaxial shake table for both bare condition and loaded condition with a slender specimen.

Simple Neuro-Controllers for Field-Oriented Induction Motor Servo Drives

  • Fayez F. M.;Sousy, E-I;M. M. Salem
    • Journal of Power Electronics
    • /
    • 제4권1호
    • /
    • pp.28-38
    • /
    • 2004
  • In this paper, the position control of a detuned indirect field oriented control (IFOC) induction motor drive is studied. A proposed Simple-Neuro-Controllers (SNCs) are designed and analyzed to achieve high-dynamic performance both in the position command tracking and load regulation characteristics for robotic applications. The proposed SNCs are trained on-line based on the back propagation algorithm with a modified error function. Four SNCs are developed for position, speed and d-q axes stator currents respectively. Also, a synchronous proportional plus integral-derivative (PI-D) two-degree-of-freedom (2DOF) position controller and PI-D speed controller are designed for an ideal IFOC induction motor drive with the desired dynamic response. The performance of the proposed SNCs and synchronous PI-D 2DOF position controllers for detuned field oriented induction motor servo drive is investigated. Simulation results show that the proposed SNCs controllers provide high-performance dynamic characteristics which are robust with regard to motor parameter variations and external load disturbance. Furthermore, comparing the SNC position controller with the synchronous PI-D 2DOF position controller demonstrates the superiority of the proposed SNCs controllers due to attain a robust control performance for IFOC induction motor servo drive system.

Design of a decoupled PID controller via MOCS for seismic control of smart structures

  • Etedali, Sadegh;Tavakoli, Saeed;Sohrabi, Mohammad Reza
    • Earthquakes and Structures
    • /
    • 제10권5호
    • /
    • pp.1067-1087
    • /
    • 2016
  • In this paper, a decoupled proportional-integral-derivative (PID) control approach for seismic control of smart structures is presented. First, the state space equation of a structure is transformed into modal coordinates and parameters of the modal PID control are separately designed in a reduced modal space. Then, the feedback gain matrix of the controller is obtained based on the contribution of modal responses to the structural responses. The performance of the controller is investigated to adjust control force of piezoelectric friction dampers (PFDs) in a benchmark base isolated building. In order to tune the modal feedback gain of the controller, a suitable trade-off among the conflicting objectives, i.e., the reduction of maximum modal base displacement and the maximum modal floor acceleration of the smart base isolated structure, as well as the maximum modal control force, is created using a multi-objective cuckoo search (MOCS) algorithm. In terms of reduction of maximum base displacement and story acceleration, numerical simulations show that the proposed method performs better than other reported controllers in the literature. Moreover, simulation results show that the PFDs are able to efficiently dissipate the input excitation energy and reduce the damage energy of the structure. Overall, the proposed control strategy provides a simple strategy to tune the control forces and reduces the number of sensors of the control system to the number of controlled stories.

자기동조에 의한 PD 형 퍼지제어시스템의 응답 개선 (The Response Improvement of PD Type FLC System by Self Tuning)

  • 최한수;이경웅
    • 제어로봇시스템학회논문지
    • /
    • 제18권12호
    • /
    • pp.1101-1105
    • /
    • 2012
  • This study proposes a method for improvement of PD type fuzzy controller. The method includes self tuner using gradient algorithm that is one of the optimization algorithms. The proposed controller improves simple Takagi-Sugeno type FLC (Fuzzy Logic Control) system. The simple Takagi-Sugeno type FLC system changes nonlinear characteristic to linear parameters of consequent membership function. The simple FLC system could control the system by calibrating parameter of consequent membership function that changes the system response. While the determination on parameter of the simple FLC system works well only partially, the proposed method is needed to determine parameters that work for overall response. The simple FLC system doesn't predict the response characteristics. While the simple FLC system works just like proportional part of PID, our system includes derivative part to predict the next response. The proposed controller is constructed with P part and D part FLC system that characteristic parameter on system response is changed by self tuner for effective response. Since the proposed controller doesn't include integral part, it can't eliminate steady state error. So we include a gain to eliminate the steady state error.

게인 스케줄링을 이용한 광대역 온도제어기의 설계 (Design of Temperature based Gain Scheduled Controller for Wide Temperature Variation)

  • 정재현;김정한
    • 한국정밀공학회지
    • /
    • 제30권8호
    • /
    • pp.831-838
    • /
    • 2013
  • This paper focused on the design of an efficient temperature controller for a plant with a wide range of operating temperatures. The greater the temperature difference a plant has, the larger the nonlinearity it is exposed to in terms of heat transfer. For this reason, we divided the temperature range into five sections, and each was modeled using ARMAX(auto regressive moving average exogenous). The movement of the dominant poles of the sliced system was analyzed and, based on the variation in the system parameters with temperature, optimal control parameters were obtained through simulation and experiments. From the configurations for each section of the temperature range, a temperature-based gain-scheduled controller (TBGSC) was designed for parameter variation of the plant. Experiments showed that the TBGSC resulted in improved performance compared with an existing proportional integral derivative (PID) controller.

A non-linear tracking control scheme for an under-actuated autonomous underwater robotic vehicle

  • Mohan, Santhakumar;Thondiyath, Asokan
    • International Journal of Ocean System Engineering
    • /
    • 제1권3호
    • /
    • pp.120-135
    • /
    • 2011
  • This paper proposes a model based trajectory tracking control scheme for under-actuated underwater robotic vehicles. The difficulty in stabilizing a non-linear system using smooth static state feedback law means that the design of a feedback controller for an under-actuated system is somewhat challenging. A necessary condition for the asymptotic stability of an under-actuated vehicle about a single equilibrium is that its gravitational field has nonzero elements corresponding to non-actuated dynamics. To overcome this condition, we propose a continuous time-varying control law based on the direct estimation of vehicle dynamic variables such as inertia, damping and Coriolis & centripetal terms. This can work satisfactorily under commonly encountered uncertainties such as an ocean current and parameter variations. The proposed control law cancels the non-linearities in the vehicle dynamics by introducing non-linear elements in the input side. Knowledge of the bounds on uncertain terms is not required and it is conceptually simple and easy to implement. The controller parameter values are designed using the Taguchi robust design approach and the control law is verified analytically to be robust under uncertainties, including external disturbances and current. A comparison of the controller performance with that of a linear proportional-integral-derivative (PID) controller and sliding mode controller are also provided.

Optimal PID Controller Design for DC Motor Speed Control System with Tracking and Regulating Constrained Optimization via Cuckoo Search

  • Puangdownreong, Deacha
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권1호
    • /
    • pp.460-467
    • /
    • 2018
  • Metaheuristic optimization approach has become the new framework for control synthesis. The main purposes of the control design are command (input) tracking and load (disturbance) regulating. This article proposes an optimal proportional-integral-derivative (PID) controller design for the DC motor speed control system with tracking and regulating constrained optimization by using the cuckoo search (CS), one of the most efficient population-based metaheuristic optimization techniques. The sum-squared error between the referent input and the controlled output is set as the objective function to be minimized. The rise time, the maximum overshoot, settling time and steady-state error are set as inequality constraints for tracking purpose, while the regulating time and the maximum overshoot of load regulation are set as inequality constraints for regulating purpose. Results obtained by the CS will be compared with those obtained by the conventional design method named Ziegler-Nichols (Z-N) tuning rules. From simulation results, it was found that the Z-N provides an impractical PID controller with very high gains, whereas the CS gives an optimal PID controller for DC motor speed control system satisfying the preset tracking and regulating constraints. In addition, the simulation results are confirmed by the experimental ones from the DC motor speed control system developed by analog technology.

조수간만의 차를 고려한 새로운 하역 시스템의 능동 제어 (Active Control of a New Cargo Handling System Adapted for Time-Varying Tide)

  • 김형석;정달도;최승복;이재욱
    • 대한조선학회논문집
    • /
    • 제36권2호
    • /
    • pp.61-71
    • /
    • 1999
  • 본 연구에서는 조수간만의 차가 큰 항만에 적합한 새로운 하역 시스템을 제안하였다. 새로운 하역 시스템은 기존의 갑문 이용 방식 대신에 일종의 유압 엘리베이터를 사용함으로써 조수간만의 차에 따라 변하는 선박의 높이로 실시간 제어하여 선적 흑은 하역을 하는 방식이다. 한번에 대량의 컨테이너를 처리하기 위해 컨테이너 팔레트 운송타를 도입함으로써 기존 시스템에 비해 시간당 처리능력을 높일 수 있고, 선적 및 하역의 전 과정을 자동화함으로써 작업 효율을 극대화할 수 있도록 하였다. 새로운 하역 시스템의 개념 입증을 위해 소형 하역 시스템 모델을 설계 제작하였다. 제작된 모델은 컨테이너 팔레트 운송차, 플랫폼과 리프트 칼럼의 복합 구조물, 그리고 전용 운반선으로 구성된다. ER(electro-rheological) 밸브-실린더에 의해 구동되는 플랫폼은 조수간만의 차와 과도에 의해 변하는 선박의 높이를 능동적으로 추적 제어하게 된다. 동적 모델성을 통해 플랫폼의 운동 지배 방정식을 도출하였고, 파도 가진으로 인한 선박의 거동 및 조수간만의 차를 모델링하였다. 선적 및 하역의 자동화와 플랫폼의 정확한 위치 제어를 위해 시퀀스 제어기와 PID(proportional-integral-derivative) 위치 제어기가 연계된 제어 시스템을 구성하였다. 컴퓨터 시뮬레이션과 실험을 통해 제안된 하역 시스템의 유용성을 입증하였다.

  • PDF

The optimization study of core power control based on meta-heuristic algorithm for China initiative accelerator driven subcritical system

  • Jin-Yang Li;Jun-Liang Du;Long Gu;You-Peng Zhang;Cong Lin;Yong-Quan Wang;Xing-Chen Zhou;Huan Lin
    • Nuclear Engineering and Technology
    • /
    • 제55권2호
    • /
    • pp.452-459
    • /
    • 2023
  • The core power control is an important issue for the study of dynamic characteristics in China initiative accelerator driven subcritical system (CiADS), which has direct impact on the control strategy and safety analysis process. The CiADS is an experimental facility that is only controlled by the proton beam intensity without considering the control rods in the current engineering design stage. In order to get the optimized operation scheme with the stable and reliable features, the variation of beam intensity using the continuous and periodic control approaches has been adopted, and the change of collimator and the adjusting of duty ratio have been proposed in the power control process. Considering the neutronics and the thermal-hydraulics characteristics in CiADS, the physical model for the core power control has been established by means of the point reactor kinetics method and the lumped parameter method. Moreover, the multi-inputs single-output (MISO) logical structure for the power control process has been constructed using proportional integral derivative (PID) controller, and the meta-heuristic algorithm has been employed to obtain the global optimized parameters for the stable running mode without producing large perturbations. Finally, the verification and validation of the control method have been tested based on the reference scenarios in considering the disturbances of spallation neutron source and inlet temperature respectively, where all the numerical results reveal that the optimization method has satisfactory performance in the CiADS core power control scenarios.