• Title/Summary/Keyword: proportional counter

Search Result 76, Processing Time 0.024 seconds

Activity Concentrations of 137Cs and 90Sr in Seawaters of East Sea, Korea

  • Lee, Hae Young;Kim, Wan;Kim, Yong-Hwan;Maeng, Seongjin;Lee, Sang Hoon
    • Journal of Radiation Protection and Research
    • /
    • v.41 no.3
    • /
    • pp.268-273
    • /
    • 2016
  • Background: This study was a long-term evaluation of $^{137}Cs$ and $^{90}Sr$ activity concentrations in seawater samples from the East Sea, Korea, in order to establish current activity levels. Results and long-term monitoring trends will be useful in the future monitoring of environmental radioactivity. Materials and Methods: Surface seawater samples were collected quarterly from Guryongpo and Jangho in the East Coast between 1998 and 2010 and the quarterly deep seawater samples were collected from three sites in the sea adjacent to Ulleung-do between 2012 and 2015. The activity concentrations of $^{137}Cs$ were measured using a gamma-spectrometer. The activity concentrations of $^{90}Sr$ and $^{90}Y$ in a radioactive equilibrium state were measured using a gas flow proportional counter. Results and Discussion: We found the annual average activity concentrations of $^{137}Cs$ in the surface seawater was $1.66-2.89mBq{\cdot}kg^{-1}$ in Guryongpo and $1.68-2.43mBq{\cdot}kg^{-1}$ in Jangho. The annual average activity concentrations of $^{90}Sr$ in the surface seawater was $0.83-1.98mBq{\cdot}kg^{-1}$ in Guryongpo and $0.82-1.57mBq{\cdot}kg^{-1}$ in Jangho. The annual average activity concentrations of $^{137}Cs$ in the deep seawater sites were $1.51-1.73mBq{\cdot}kg^{-1}$, $1.19-1.60mBq{\cdot}kg^{-1}$ and $0.87-1.15mBq{\cdot}kg^{-1}$ in TH, JD, and HP. The annual average activity concentrations of $^{90}Sr$ in the same deep seawater sites were $1.00-1.94mBq{\cdot}kg^{-1}$, $0.82-1.26mBq{\cdot}kg^{-1}$, and $0.79-1.32mBq{\cdot}kg^{-1}$. The effective half-life was calculated by analyzing change over time in the activity concentration in the surface seawater. The effective half-life of $^{137}Cs$ was $15.3{\pm}0.1years$ in Guryongpo and $102{\pm}3years$ in Jangho. The effective half-life of $^{90}Sr$ was $28.3{\pm}4.3years$ in Guryongpo and $16.6{\pm}0.1years$ in Jangho. The ratio of the average activity concentration ($^{137}Cs/^{90}Sr$) was 1.72 in the surface seawater, which is similar to the reported ratio of the global radioactive fallout. The ratio in the deep seawater was 1.24, which is somewhat low compared to the global ratio (1.6, 1.8). Conclusion: Activity concentrations of $^{137}Cs$ and $^{90}Sr$ in the seawaters of the East Sea were similar to the previously reported activity levels in the East Sea and northwestern Pacific as a result of global radioactive fallout following atmospheric nuclear weapon tests.

Calibration of CR-39 for Hadron Radiotherapy using 400 MeV/u C ions (400 MeV/u 탄소 이온에 대한 방사선치료 선량 측정용 고체비적검출기의 교정)

  • Kim, Sunghwan;Nam, Uk-Won;Lee, Jaejin;Park, Won-Kee;Pyo, Jeonghyun;Moon, Bong-Kon
    • Journal of radiological science and technology
    • /
    • v.39 no.1
    • /
    • pp.43-49
    • /
    • 2016
  • In this study, equivalent dose and LET (Linear Energy Transfer) calibration of CR-39 SSNTD (Solid State Nuclear Track Detector) were performed using 400 MeV/u C heavy ions in HIMAC (Heavy Ion Medical Accelerator in Chiba) for high LET radiation therapy. The irradiated CR-39 SSNDTs were etched according the etching condition of JAXA (Japan Aerospace Exploration Agency). And the etched SSNTDs were analyzed by using Image J. Determined frequency mean dose (${\bar{y_D}}$)and dose-mean lineal energy (${\bar{y_F}}$)of 400 MeV/u C are about 8.5keV/mm and 10.1 keV/mm, respectively by using the CR-39 SSNTD. This value is very similar to the results calculated by GEANT4 Monte Carlo simulation and measured with TEPC (Tissue Equivalent Proportional Counter) active radiation detector. We could determine the equivalent dose and LET calibration factors of CR-39. And we confirmed that the CR-39 SSNTD was useful for high LET radiation dosimetry in hadron radiotherapy.

Quantification of sulfur from organic and inorganic materials for determination of 35C (35C 측정을 위한 유기물과 무기물에서 황의 정량)

  • Lee, H.N.;Kang, S.H.;Song, B.C.;Sohn, S.C.;Jee, K.Y.
    • Analytical Science and Technology
    • /
    • v.22 no.2
    • /
    • pp.186-190
    • /
    • 2009
  • The oxidation studies of a sulfur to a sulfate ion by various oxyhalide oxidants in organic (thiourea, methionine) and inorganic (sulfate, thiophosphate) compounds were carried out in an acidic solution. The optimized result of the oxidation reaction was obtained when a bromate compound (${BrO_3}^-$) as an oxidant and a 3 M $HNO_3$ solvent were used. The chemical yield for the oxidation of the organic and inorganic sulfur compounds to a sulfate ion was monitored as 80% for thiophosphate, 87% for methionine, and 100% for thiourea and sulfate within 5% RSD. The oxidations of thiourea required at least 1.6 equivalents of the bromate in an acidic solution. In the case of the oxidation of methionine and thiophosphate, the oxidation yields were above 80% if the bromate was used at 20 times higher than that of the substrates. The sulfate ion was quantitatively measured by using a GPC counting of $^{35}S$ followed by precipitates of $BaSO_4$. A quenching correction curve for the $^{35}S$ counting was obtained to use the difference via the precipitate weight result.

Development of B4C Thin Films for Neutron Detection (스퍼터링 코팅기법을 이용한 중성자 검출용 B4C 박막 개발)

  • Lim, Chang Hwy;Kim, Jongyul;Lee, Suhyun;Cho, Sang-Jin;Choi, Young-Hyun;Park, Jong-Won;Moon, Myung Kook
    • Journal of Radiation Protection and Research
    • /
    • v.40 no.2
    • /
    • pp.79-86
    • /
    • 2015
  • $^3He$ gas has been used for neutron monitors as the neutron converter owing to its advantages such as high sensitivity, good ${\gamma}$-discrimination capability, and long-term stability. However, $^3He$ is becoming more difficult to obtain in last few years due to a global shortage of $^3He$ gas. Accordingly, the cost of a neutron monitor using $^3He$ gas as a neutron converter is becoming more expensive. Demand on a neutron monitor using an alternative neutron conversion material is widely increased. $^{10}B$ has many advantages among various $^3He$ alternative materials, as a neutron converter. In order to develop a neutron converter using $^{10}B$ (actually $B_4C$), we calculated the optimal thickness of a neutron converter with a Monte Carlo simulation using MCNP6. In addition, a neutron converter was fabricated by the Ar sputtering method and the neutron signal detection efficiencies were measured with respect to various thicknesses of fabricated a neutron converter. Also, we developed a 2-dimensional multi-wire proportional chamber (MWPC) for neutron beam profile monitoring using the fabricated a neutron converter, and performed experiments for neutron response of the neutron monitor at the 30 MW research reactor HANARO at the Korea Atomic Energy Research Institute. The 2-dimensional MWPC with boron ($B_4C$) neutron converter was proved to be useful for neutron beam monitoring, and can be applied to other types of neutron imaging.

Experimental investigation of the photoneutron production out of the high-energy photon fields at linear accelerator (고에너지 방사선치료 시 치료변수에 따른 광중성자 선량 변화 연구)

  • Kim, Yeon Su;Yoon, In Ha;Bae, Sun Myeong;Kang, Tae Young;Baek, Geum Mun;Kim, Sung Hwan;Nam, Uk Won;Lee, Jae Jin;Park, Yeong Sik
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.26 no.2
    • /
    • pp.257-264
    • /
    • 2014
  • Purpose : Photoneutron dose in high-energy photon radiotherapy at linear accelerator increase the risk for secondary cancer. The purpose of this investigation is to evaluate the dose variation of photoneutron with different treatment method, flattening filter, dose rate and gantry angle in radiation therapy with high-energy photon beam ($E{\geq}8MeV$). Materials and Methods : TrueBeam $ST{\time}TM$(Ver1.5, Varian, USA) and Korea Tissue Equivalent Proportional Counter (KTEPC) were used to detect the photoneutron dose out of the high-energy photon field. Complex Patient plans using Eclipse planning system (Version 10.0, Varian, USA) was used to experiment with different treatment technique(IMRT, VMAT), condition of flattening filter and three different dose rate. Scattered photoneutron dose was measured at eight different gantry angles with open field (Field size : $5{\time}5cm$). Results : The mean values of the detected photoneutron dose from IMRT and VMAT were $449.7{\mu}Sv$, $2940.7{\mu}Sv$. The mean values of the detected photoneutron dose with Flattening Filter(FF) and Flattening Filter Free(FFF) were measured as $2940.7{\mu}Sv$, $232.0{\mu}Sv$. The mean values of the photoneutron dose for each test plan (case 1, case 2 and case 3) with FFF at the three different dose rate (400, 1200, 2400 MU/min) were $3242.5{\mu}Sv$, $3189.4{\mu}Sv$, $3191.2{\mu}Sv$ with case 1, $3493.2{\mu}Sv$, $3482.6{\mu}Sv$, $3477.2{\mu}Sv$ with case 2 and $4592.2{\mu}Sv$, $4580.0{\mu}Sv$, $4542.3{\mu}Sv$ with case 3, respectively. The mean values of the photoneutron dose at eight different gantry angles ($0^{\circ}$, $45^{\circ}$, $90^{\circ}$, $135^{\circ}$, $180^{\circ}$, $225^{\circ}$, $270^{\circ}$, $315^{\circ}$) were measured as $3.2{\mu}Sv$, $4.3{\mu}Sv$, $5.3{\mu}Sv$, $11.3{\mu}Sv$, $14.7{\mu}Sv$, $11.2{\mu}Sv$, $3.7{\mu}Sv$, $3.0{\mu}Sv$ at 10MV and as $373.7{\mu}Sv$, $369.6{\mu}Sv$, $384.4{\mu}Sv$, $423.6{\mu}Sv$, $447.1{\mu}Sv$, $448.0{\mu}Sv$, $384.5{\mu}Sv$, $377.3{\mu}Sv$ at 15MV. Conclusion : As a result, it is possible to reduce photoneutron dose using FFF mode and VMAT method with TrueBeam $ST{\time}TM$. The risk for secondary cancer of the patients will be decreased with continuous evaluation of the photoneutron dose.

Distributions of 137Cs and 90Sr in the Soil of Uljin, South Korea (울진토양에서의 137Cs 및 90Sr 분포)

  • Song, JiYeon;Kim, Wan;Maeng, Seongjin;Lee, Sang Hoon
    • Journal of Radiation Protection and Research
    • /
    • v.41 no.1
    • /
    • pp.49-55
    • /
    • 2016
  • Background: For the purpose of baseline data collection and enhancement of environmental monitoring the distribution studies of $^{137}Cs$ and $^{90}Sr$ in the soil of Uljin province was performed and the relation between surface soil activities and soil properties (pH, TOC and median of the surface soil) was analyzed. Materials and Methods: For 14 spots within 10 km from the NPP surface soil samples were collected and soils for depth profile were sampled for 3 spots in April 2011. Using ${\gamma}$-ray spectrometry with HPGe detector, the concentrations of $^{137}Cs$ were determined and the concentrations of $^{90}Sr$ were measured by counting ${\beta}$-activity of $^{90}Y$ (in equilibrium with $^{90}Sr$) in a gas flow proportional counter. Results and Discussion: The concentration ranges of $^{137}Cs$ and $^{90}Sr$ were $<0.479-39.6Bq{\cdot}(kg-dry)^{-1}$ (avg. $7.51Bq{\cdot}(kg-dry)^{-1}$) and $0.209-1.85Bq{\cdot}(kg-dry)^{-1}$ (avg. $0.74Bq{\cdot}(kg-dry)^{-1}$) which were similar to the reported values from other regions in Korea. The activity ratio of $^{137}Cs$ to $^{90}Sr$ in surface soils was around 9.67, which is much bigger than the initial value of 1.75 for worldwide fallouts because of faster downward movement of $^{90}Sr$ after fallout than that of $^{137}Cs$. For depth profile studies soils were collected down to 40 cm depth for the locations of Deokgu, Hujeong and Maehwa. The $^{137}Cs$ concentration distribution of the first two showed maximum values at top soils and decreased rapidly in exponential manner, while $^{90}Sr$ showed two local maximum values for soils near top and about 30 cm depth. Through linear fittings between the $^{137}Cs$ and $^{90}Sr$ concentrations of surface soil and pH, TOC and median of the surface soil, the only probable relationship obtained was between $^{137}Cs$ and TOC (determination coefficient $R^2=0.6$). Conclusion: The concentration ranges of $^{137}Cs$ and $^{90}Sr$ in Uljin were similar to the reported values from other regions in Korea. The only probable relationship obtained between activities and soil properties was between $^{137}Cs$ and TOC.