• Title/Summary/Keyword: property ($W_{\Pi}$)

Search Result 13, Processing Time 0.02 seconds

Soft Magnetic Properties of CoFeHfO Thin Films (CoFeHfO 박막의 자기적 특성)

  • Lee, K.E.;Tho, L.V.;Kim, S.H.;Kim, C.G.;Kim, C.O.
    • Journal of the Korean Magnetics Society
    • /
    • v.16 no.4
    • /
    • pp.197-200
    • /
    • 2006
  • Amorphous alloys of Co-rich magnetic amorphous films are well known as thpical soft magnetic alloys. They are used for many kinds of electric and electronic parts such as magnetic recording heads, transformers and inductors. CoFeHfO thin films were prepared by RF magnetron reactive sputtering. The films were deposited onto Si(100) substrates with a power of 300 W at room temperature. The reactive gas was introduced up to 10% ($O_2$/(Ar + $O_2$)) during deposition, and the $Co_{39}Fe_{34}Hf_{9.5}O_{17.5}$ thin film exhibit excellent soft magnetic properties : saturation magnetization ($4{\pi}M_s$) of 19kG, magnetic coercivity ($H_c$) of 0.37 Oe, anisotropy field ($H_k$) of 48.62 Oe, and an electrical property is also shown to be as high as 300 ${\mu}{\Omega}cm$. It is assumed that the good soft magnetic properties of $Co_{39}Fe_{34}Hf_{9.5}O_{17.5}$ thin film results from high electrical resistivity and large anisotropy field.

Magnetic Properties of Nanocrystalline $Fe_{76-x}Cu_1Mo_xSi_{14}B_9$(x=2,3) Alloys ($Fe_{76-x} Cu_1Mo_xSi_14B_9(x=2, 3)$ 초미세 결정합금의 자기적 특성)

  • Pi, W.K.;Noh, T.H.;Kim, H.J.;Kang, I.K.
    • Journal of the Korean Magnetics Society
    • /
    • v.1 no.1
    • /
    • pp.12-16
    • /
    • 1991
  • The effect of annealing on the magnetic properties and the microstructures of the amorphous $Fe_{76-x}Cu_1Mo_xSi_{14}B_9$(x=2,3) alloys were investigated. When annealed at 500${^{\circ}C}$ for 1hr, $8{\sim}9{\times}10^3$ of the effective permeability and 3~4 A/m of the coercive force were achieved upon crystallization to $\alpha$-Fe phase. And the average diameter of the $\alpha$-Fe grains was about 20nm. For the nanovrystalline ferromagnets. the fine grain size is the important requirement to obtain a good soft magnetic property. In this work, in order to get the finer grain size of $\alpha$-Fe phase, two-step annealing treatment was given. That is, following the low-temperature at $400{^{\circ}C}$ for 1~3hr, the high-temperature annealing at $500{^{\circ}C}$ for 1hr was carried out. As the low-temperature annealing time increased, the effective permeability increased to $1.2{\sim}1.7{\times}10^4$ and the coercive force decreased to about 2 A/m. And the grain size was observed to be smaller than 10nm. The increased permeability and the decreased coercive force were attributed to the reduced average crystalline anisotropy by the refinement of $\alpha$-Fe(Si) grains.

  • PDF

Synthesis of Binuclear Bismacrocyclic Iron(II) Complex by the Aerobic Oxidation of Iron(II) Complex of 1,4,8,11-Tetraazacyclotetradecane

  • Myunghyun Paik Suh;Gee-Yeon Kong;Il-Soon Kim
    • Bulletin of the Korean Chemical Society
    • /
    • v.14 no.4
    • /
    • pp.439-444
    • /
    • 1993
  • The aerobic oxidation of the Fe(II) complex of 1,4,8,11-tetraazacyclotetradecane, [Fe(cyclam)$(CH_3CN)_2](ClO_4)_2$, in MeCN in the presence of a few drops of $HClO_4$ leads to low spin Fe(III) species [Fe(cyclam)$(CH_3CN)_2](ClO_4)_3$. The Fe(III) cyclam complex is further oxidized in the air in the presence of a trace of water to produce the deep green binuclear bismacrocyclic Fe(II) complex $[Fe_2(C_{20}H_{36}N_8)(CH_3CN)_4](ClO_4)_4{\cdot}2CH_3CN$. The Fe(II) ions of the complex are six-coordinated and the bismacrocyclic ligand is extensively unsaturated. $[Fe_2(C_{20}H_{36}N_8)(CH_3CN)_4](ClO_4)_4{\cdot}2CH_3CN$ crystallizes in the monoclinic space group $P2_1/n$ with a= 13.099 (1) ${\AA}$, b= 10.930 (1) ${\AA}$, c= 17.859 (1) ${\AA}$, ${\beta}$= 95.315 $(7)^{\circ}$, and Z= 2. The structure was solved by heavy atom methods and refined anisotropically to R values of R= 0.0633 and $R_w$= 0.0702 for 1819 observed reflections with F > $4{\sigma}$ (F) measured with Mo K${\alpha}$ radiation on a CAD-4 diffractometer. The two macrocyclic units are coupled through the bridgehead carbons of ${\beta}$-diimitie moieties by a double bond. The double bonds in each macrocycle unit are localized. The average bond distances of $Fe(II)-N_{imine}$, $Fe(II)-N_{amine}$, and $Fe(II)-N_{MeCN}$ are 1.890 (5), 2.001 (5), and 1.925 (6) ${\AA}$, respectively. The complex is diamagnetic, containing two low spin Fe(II) ions in the molecule. The complex shows extremely intense charge transfer band in the near infrared at 868 nm with ${\varepsilon}$= 25,000 $M^{-1}cm^{-1}$. The complex shows a one-electron oxidation wave at +0.83 volts and two one-electron reduction waves at -0.43 and-0.72 volts vs. Ag/AgCl reference electrode. The complex reacts with carbon monoxide in $MeNO_2$ to form carbonyl adducts, whose $v_{CO}$ value (2010 $cm^{-1}$) indicates the ${\pi}$-accepting property of the present bismacrocyclic ligand.