• Title/Summary/Keyword: properties with stress

Search Result 3,565, Processing Time 0.031 seconds

The Evaluation of Crack Propagation in Functionally Graded Materials with Coatings (코팅 경사기능 재료의 균열전파에 관한 평가)

  • Kwon, Oh-Heon
    • Journal of the Korean Society of Safety
    • /
    • v.23 no.4
    • /
    • pp.25-29
    • /
    • 2008
  • Recently, new functionally graded material(FGM) that has a spatial variation in composition and properties is developed because of its good quality. This material yields the demands for resistance to corrosion and high temperature in turbine blade, wear resistance as in gears and high strength machine parts. Especially coating treatment in FGM surface brings forth a mechanical weak at the interface due to discontinuous stress resulting from a steep material change. It often, leads cracks or spallation in a coating area around an interface. The behavior of propagation cracks in FGMs was here investigated. The interface stresses were reduced because of graded material properties. Also graded material parameter with exponential equation was founded to influence the stress intensity factor. And the resistance curve with FGM coating was slightly increased.

On the Thermal Stress and Residual Stress Distributions in a Aluminum Alloy Plate due to Resistance Spot Welding (알루미늄합금(合金)의 저항용접(抵抗熔接)에 따른 열응력(熱應力) 및 잔류응력(殘留應力)의 해석(解析))

  • Zae-Geun,Kim;Hyo-Chul,Kim
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.9 no.2
    • /
    • pp.21-32
    • /
    • 1972
  • The problems of thermal stress and residual stress in resistance spot welding are studied from two standpoint namely, effect of temperature distributions and effect of the radius of free boundary. The radius of the region where the temperature distributions are occured is taken as a function of time after welding and as a finite size, 6 times of heated zone. The region of the radial stress distribution is treated as a function of time under Saint-Venant's principle and 6 or 12 times of originally heated zone. Thermal stresses and strains are obtained by analytic solution under constant mechanical properties and by the finite difference method for varing properties under temperature variation. From the computed results following conclusions are derived (1) For the engineering purpose, the region of temperature distribution and stress distribution can be treated as a finite region, $R=r_o=6r_e$ (2) If the maximum temperature of the aluminum alloy plate is less than $500^{\circ}F$, thermal stresses and strains can be obtained with constant mechanical properties. (3) The residual stresses and strains will be remained in welds and its vicinity.

  • PDF

Effect of Blastfurnace Slag Fineness on the Rheological Properties of Cement Pastes (고로슬래그 분말도가 시멘트 페이스트의 유동특성에 미치는 영향)

  • Song, Jong-Taek;You, Chang-Dal;Byun, Seung-Ho
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.2 s.297
    • /
    • pp.103-109
    • /
    • 2007
  • In this study, the rheological properties of cement pastes containing blastfurnace slag of different fineness were investigated. The fluidity of cement pastes with low Blaine value blastfurnace slag was increased with decreasing the plastic viscosity and the yield stress of pastes. And the optimum dosage of polycarboxylate type superplasticizer to the cement pastes was confirmed according to the fineness and the replacement ratio of blastfurnace slag. All cement pastes showed the thixotropy behavior. And also it was formed that the segregation range of cement pastes was occurred below $10D/cm^2$ of the yield stress and below 350 cPs of the plastic viscosity by the coaxial cylinder viscometer.

Modeling of concrete containing steel fibers: toughness and mechanical properties

  • Cagatay, Lsmail H.;Dincer, Riza
    • Computers and Concrete
    • /
    • v.8 no.3
    • /
    • pp.357-369
    • /
    • 2011
  • In this study, effect of steel fibers on toughness and some mechanical properties of concrete were investigated. Hooked-end steel fibers were used in concrete samples with three volume fractions (${\nu}_f$) of 0.5%, 0.75% and 1% and for two aspect ratios (l/d) of 45 and 65. Compressive and flexural tensile strength and modulus of elasticity of concrete were determined for cylindrical, cubic and prismatic samples at the age of 7 and 28 days. The stress-strain curves of standard cylindrical specimens were studied to determine the effect of steel fibers on toughness of steel-fiber-reinforced concrete (SFRC). In addition, the relationship between compressive strength and the flexural tensile strength of SFRC were reported. Finally, a simple model was proposed to generate the stress-strain curves for SFRC based on strains corresponding to the peak compressive strength and 60% of peak compressive stress. The proposed model was shown to provide results in good correlation with the experimental results.

Stress Effects on Magnetic Properties of Amorphous Fe-B-Si Ribbon (Fe-B-Si 비정질 리본의 자기특성에 미치는 응력의 영향)

  • 송재성;김기욱;임호빈
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.40 no.5
    • /
    • pp.496-500
    • /
    • 1991
  • The effects of annealing with and without magnetic field on magnetic properties of amorphous Fe-B-Si cores have been investigated as a function of toroidal stress. By decreasing the toroidal stress, the magnetic properties of the amorphous ribbon have beenimproved. Near 180 domain walls exist in the thermally annealed toroidal cores, but the domain walls exist in the thermally annealed toroidal cores, but the domain walls are not parallel to the longitudinal direction of the ribbon. In the specimen annealed with a magnetic field strength of 10 Oe in the longitudinal ribbon length axis, the domains are nearly parallel to the longitudinal direction due to the field induced uniaxial anisotropy resulting in further increase in the remanent magnetization and decrease in the coercive force and loss.

  • PDF

Evaluation of Mechanical Compressive Properties of Al-Si-Cu-Mg Alloy Foams Using Electrical Conductivity (전기전도도를 이용한 Al-Si-Cu-Mg 합금 품의 기계적 압축 특성 평가)

  • Lee, Chang-Hun;Kim, Am-Kee;Ha, San;Nahm, Seung-Hoon;Cho, Seong-Seock
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.377-381
    • /
    • 2004
  • Electrical conductivity of Al-Si-Cu-Mg alloy foams of various density produced in powder metallurgical method has been measured using two probe electrical conductivity measurement method. Compressive mechanical properties such as elastic modulus and plastic plateau stress of foams were evaluated from electrical conductivity using power law relation and scaling laws of foam properties. Uni-axial compression test was also performed. Experimentally measured elastic modulus and plastic plateau stress were compared with the values evaluated from electrical conductivity. The computed values were in good agreement with the experimental result.

  • PDF

Exact solutions of the piezoelectric transducer under multi loads

  • Zhang, Taotao;Shi, Zhifei
    • Smart Structures and Systems
    • /
    • v.8 no.4
    • /
    • pp.413-431
    • /
    • 2011
  • Under the external shearing stress, the external radial stress and the electric potential simultaneously, the piezoelectric hollow cylinder transducer is studied. With the Airy stress function method, the analytical solutions of this transducer are obtained based on the theory of piezo-elasticity. The solutions are compared with the finite element results of Ansys and a good agreement is found. Inherent properties of this piezoelectric cylinder transducer are presented and discussed. It is very helpful for the design of the bearing controllers.

Mechanical Properties with Aging Time in High Nitrogen Steel for Transmission Line (가공송전선용 고질소강의 시효시간에 따른 기계적 특성의 변화)

  • Kim, Bong-Seo;Yoo, Kyung-Jae;Kwon, Hae-Woong;Lee, Hee-Woong;Kim, Byung-Geol
    • Proceedings of the KIEE Conference
    • /
    • 1999.07d
    • /
    • pp.1664-1666
    • /
    • 1999
  • In order to study the mechanical properties of high nitoren steel with ageing time, hardness, tensile stress several basic properties of Fe-Mn-Cr-Ni-N steel have been studied. With increasing partial pressure of nitrogen and ageing time to 10h, hardness and tensile stress are increased, but decreased beyond 10h because of over ageing. It is considered that the main factor related with mechnical properties is carbide precipitate, $M_7C_3$ which is precipitated with ageing time in matrix and optimum ageing time is 10h in $60^{\circ}C$.

  • PDF

Extension of a new tailoring optimisation technique to sandwich shells with laminated faces

  • Icardi, Ugo
    • Structural Engineering and Mechanics
    • /
    • v.43 no.6
    • /
    • pp.739-759
    • /
    • 2012
  • The tailoring optimization technique recently developed by the author for improving structural response and energy absorption of composites is extended to sandwich shells using a previously developed zig-zag shell model with hierarchic representation of displacements. The in-plane variation of the stiffness properties of plies and the through-the thickness variation of the core properties are determined solving the Euler-Lagrange equations of an extremal problem in which the strain energy due to out-of-plane strains and stresses is minimised, while that due to their in-plane counterparts is maximised. In this way, the energy stored by unwanted out-of-plane modes involving weak properties is transferred to acceptable in-plane modes. As shown by the numerical applications, the critical interlaminar stress concentrations at the interfaces with the core are consistently reduced without any bending stiffness loss and the strength to debonding of faces from the core is improved. The structural model was recently developed by the author to accurately describe strain energy and interlaminar stresses from the constitutive equations. It a priori fulfills the displacement and stress contact conditions at the interfaces, considers a second order expansion of Lame's coefficients and a hierarchic representation that adapts to the variation of solutions. Its functional d.o.f. are the traditional mid-plane displacements and the shear rotations, so refinement implies no increase of the number of functional d.o.f. Sandwich shells are represented as multilayered shells made of layers with different thickness and material properties, the core being treated as a thick intermediate layer.

Influence of water content on dynamic mechanical properties of coal

  • Gu, Helong;Tao, Ming;Wang, Jingxiao;Jiang, Haibo;Li, Qiyue;Wang, Wen
    • Geomechanics and Engineering
    • /
    • v.16 no.1
    • /
    • pp.85-95
    • /
    • 2018
  • Water affects the mechanical properties of coal and stress wave propagation. To comprehensively investigate the effect of water content on the properties of coal, laboratory tests including X-Ray Diffraction (XRD) analysis, P-wave test, S-wave test, static and dynamic compression test with different water contents were conducted. The compressive strength, elastic modulus and failure strain and their mechanism of coal specimen under coupled static-dynamic load with the increased water content were observed. Meanwhile, energy transmission and dissipation characteristics of a stress wave in coal specimens with different water contents under dynamic load and its relation with the failure features, such as fragmentation and fractal dimension, of coal was analyzed. Furthermore, the dynamic interpretation of water infusion to prevent coal burst based on water infusion model of coal seam roadway was provided.