• Title/Summary/Keyword: properties with stress

Search Result 3,546, Processing Time 0.028 seconds

Effects of loading conditions on the fatigue failure characteristics in a polycarbonate

  • Okayasu, Mitsuhiro;Yano, Kei;Shiraishi, Tetsuro
    • Advances in materials Research
    • /
    • v.3 no.3
    • /
    • pp.163-174
    • /
    • 2014
  • In this study, fatigue properties and crack growth characteristics of a polycarbonate (PC) were examined during cyclic loading at various mean stress (${\sigma}_{amp}$) and stress amplitude (${\sigma}_{mean}$) conditions. Different S vs. N and da/dN vs. ${\Delta}K$ relations were obtained depending on the loading condition. The higher fatigue strength and the higher resistance of crack growth are seen for the PC samples cyclically loaded at the higher mean stress and lower stress amplitude due to the low crack driving force. Non-linear S - N relationship was detected in the examination of the fatigue properties with changing the mean stress. This is attributed to the different crack growth rate (longer fatigue life): the sample loaded at the high mean stress with lower stress amplitude. Even if the higher stress amplitude, the low fatigue properties are obtained for the sample loaded at the higher mean stress. This was due to the accumulated strain energy to the sample, where severe plastic deformation occurs instead of crack growth (plasticity-induced crack closure). Shear bands and discontinuous crack growth band (DGB) are observed clearly on the fracture surfaces of the sample cyclically loaded at the high stress amplitude, where the lower the ${\sigma}_{mean}$, the narrower the shear band and DGB. On the other hand, final fracture occurred instantly immediately after the short crack growth occurs in the PC sample loaded at the high mean with the low ${\sigma}_{amp}$, i.e., tear fracture, in which the shear bands and DGB are not seen clearly.

Thermal Stress Calculations Using Enhanced Green's Function Considering Temperature-dependent Material Properties (온도 의존적 재료물성치를 고려한 개선된 그린함수 기반 열응력 계산)

  • Han, Tae-Song;Huh, Nam-Su;Jeon, Hyun-Ik;Ha, Seung-Woo;Cho, Sun-Young
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.5
    • /
    • pp.535-540
    • /
    • 2015
  • We propose an enhanced Green's function approach to predict thermal stresses by considering temperature-dependent material properties. We introduce three correction factors for the maximum stress, the time taken to reach maximum stress, and the time required to attain steady state based on the Green's function results for each temperature. The proposed approach considers temperature-dependent material properties using correction factors, which are defined as polynomial expressions with respect to temperatures based on Green's functions, that we obtain from finite-element (FE) analyses at each temperature. We verify the proposed approach by performing detailed FE analyses on thermal transients. The Green's functions predicted by the proposed approach are in good agreement with those obtained from FE analyses for all temperatures. Moreover, the thermal stresses predicted using the proposed approach are also in good agreement with the FE results, and the proposed approach provides better predictions than the conventional Green's function approach using constant, time-independent material properties.

Korean Emotional Laborers' Job Stressors and Relievers: Focus on Work Conditions and Emotional Labor Properties

  • Lee, Garam
    • Safety and Health at Work
    • /
    • v.6 no.4
    • /
    • pp.338-344
    • /
    • 2015
  • Background: The present study aims to investigate job stressors and stress relievers for Korean emotional laborers, specifically focusing on the effects of work conditions and emotional labor properties. Emotional laborers are asked to hide or distort their real emotions in their interaction with clients. They are exposed to high levels of stress in the emotional labor process, which leads to serious mental health risks including burnout, depression, and even suicide impulse. Exploring job stressors and relieving factors would be the first step in seeking alternatives to protect emotional laborers from those mental health risks. Methods: Using the third wave data of Korean Working Conditions Survey, logistic regression analysis was conducted for two purposes: to examine the relations of emotional labor and stress, and to find out job stressors and relievers for emotional laborers. Results: The chances of stress arousal are 3.5 times higher for emotional laborers; emotional laborers experience double risk-burden for stress arousal. In addition to general job stressors, emotional laborers need to bear burdens related to emotional labor properties. The effect of social support at the workplace is not significant for stress relief, unlike common assumptions, whereas subjective satisfaction (wage satisfaction and work-life balance) is proven to have relieving effects on emotional laborers' job stress. Conclusion: From the results, the importance of a balanced understanding of emotional labor for establishing effective policies for emotional laborer protection is stressed.

Effects of Process Temperature on the Tribological Properties of Tetrahedral Amorphous Carbon (ta-C) Coating (공정 온도에 따른 사면체 비정질 카본 (ta-C) 코팅의 트라이볼로지적 특성연구)

  • Kang, Yong-Jin;Kim, Do Hyun;Ryu, Hojun;Kim, Jongkuk;Jang, Young-Jun
    • Tribology and Lubricants
    • /
    • v.35 no.6
    • /
    • pp.362-368
    • /
    • 2019
  • In this study, mechanical and tribological properties were investigated by varying the process temperature (50, 100, 125 and 150℃) to reduce internal stress. The internal stress reduction by thermal dissociation ta-C coating film with increasing temperature is confirmed through the curvature radius of the ta-C coating according to the temperature of the SUS plate. As the coating temperature increased, the mechanical properties (hardness, modulus, toughness) deteriorated, which is in agreement with the Raman analysis results. As the temperature increased, the sp2 phase ratio increased owing to the dissociation of the sp3 phase. The friction and wear properties are related to the process temperature during ta-C coating. Low friction and wear properties are observed in high hardness samples manufactured at 50℃, and wear resistance properties decreased with increasing temperature. The contact area is expected to increase owing to the decrease of hardness(72 GPa to 39 GPa) and fracture toughness with increasing temperature which accelerated wear because of the debris generated. It was confirmed that at process temperature of over than 100℃, the bond structure of the carbon film changed, and the effect of excellent internal stress was reduced. However, the wear resistance simultaneously decreased owing to the reduction in fracture toughness. Therefore, in order to increase industrial utilization, optimum temperature conditions that reduce internal stress and retain mechanical properties.

Prediction of ECC tensile stress-strain curves based on modified fiber bridging relations considering fiber distribution characteristics

  • Lee, Bang Yeon;Kim, Jin-Keun;Kim, Yun Yong
    • Computers and Concrete
    • /
    • v.7 no.5
    • /
    • pp.455-468
    • /
    • 2010
  • This paper presents a prediction and simulation method of tensile stress-strain curves of Engineered Cementitious Composites (ECC). For this purpose, the bridging stress and crack opening relations were obtained by the fiber bridging constitutive law which is quantitatively able to consider the fiber distribution characteristics. And then, a multi-linear model is employed for a simplification of the bridging stress and crack opening relation. In addition, to account the variability of material properties, randomly distributed properties drawn from a normal distribution with 95% confidence are assigned to each element which is determined on the basis of crack spacing. To consider the variation of crack spacing, randomly distributed crack spacing is drawn from the probability density function of fiber inclined angle calculated based on sectional image analysis. An equation for calculation of the crack spacing that takes into quantitative consideration the dimensions and fiber distribution was also derived. Subsequently, a series of simulations of ECC tensile stress-strain curves was performed. The simulation results exhibit obvious strain hardening behavior associated with multiple cracking, which correspond well with test results.

Rheological Properties of Bundled Leaf Vegetables Held and Picked-up by Machine (줄기 엽채소의 기계적 파지시 리올로지 특성)

  • Jun, Hyeon-Jong;Kim, Sang-Hun
    • Journal of Biosystems Engineering
    • /
    • v.32 no.6
    • /
    • pp.395-402
    • /
    • 2007
  • This study was carried out as basic researches to develop the leaf vegetable harvester. This study was conducted to investigate physical and rheological properties of bundled leaf vegetables with stem (Chinese leek, Crown daisy and Chamnamul) as test materials held and picked-up by a machine. Stress-strain behavior, stress relaxation, and strain recovery for the bundled materials were analyzed using simple Maxwell model. Physical and rheological properties of the materials were investigated by measuring rupture load, deformation and stress experimentally. Also, strain recovery time when unloading was measured using super high speed camera. Recorded recovery time for stress-strain behavior was0.026 s for Chinese leek with liner strain recovery, 0.046 s for Crown daisy and 0.05 s for Chamnamul with non-linear strain recovery. Furthermore, the strain recovery time for permanent deformation was 0.026 s, 0.046 s, and 0.05 s for Chinese Leek, Crown daisy and Chamnamul, respectively. Finally, strain recovery time and strain recovery ratio for the test materials were 0.17 s, 60.4% in Chinese leek, 0.12 s, 55.3% in Crown daisy, 0.15 s, 58.7% in Chamnamul. Here strain recovery time means that how fast the test materials are recovered from initial deformation and strain recovery ratio means how much the test materials are recovered from initial deformation. The above results show that the test materials can be held enough and moved by the belts.

Influence of brass laminate volume fraction on electromechanical properties of externally laminated coated conductor tapes

  • Bautista, Zhierwinjay M.;Shin, Hyung-Seop;Lee, Jae-Hun;Lee, Hunju;Moon, Seung-Hyun
    • Progress in Superconductivity and Cryogenics
    • /
    • v.18 no.3
    • /
    • pp.6-9
    • /
    • 2016
  • The enhancement of mechanical properties of coated conductor (CC) tapes in practical application are usually achieved by reinforcing through lamination or electroplating metal layers on either sides of the CC tape. Mechanical or electromechanical properties of the CC tapes have been largely affected by the lamination structure under various loading modes such as tension, bending or even cyclic. In this study, the influence of brass laminate volume fraction on electromechanical properties of RCE-DR processed Gadolinium-barium-copper-oxide (GdBCO) CC tapes was investigated. The samples used were composed of single-side and both-side laminate of brass layer to the Cu-stabilized CC tape and their $I_c$ behaviors were compared to those of the Cu-stabilized CC tape without external lamination. The stress/strain dependences of $I_c$ in laminated CC tapes under uniaxial tension were analyzed and the irreversible stress/strain limits were determined. As a result, the increase of brass laminate volume fraction initially increased the irreversible strain limit and became gradual. The corresponding irreversible stress limit, however, showed no difference even though the brass laminate volume fraction increased to 3.4. But the irreversible load limit linearly increased with the brass laminate volume fraction.

Effects of Cryogenic Treatment Cycles on Residual Stress and Mechanical Properties for 7075 Aluminum Alloy (극저온 열처리가 7075 알루미늄 합금의 잔류응력과 기계적 특성에 미치는 영향)

  • Kim, Hoi-Bong;Jeong, Eun-Wook;Ko, Dae-Hoon;Kim, Byung-Min;Cho, Young-Rae
    • Korean Journal of Materials Research
    • /
    • v.23 no.1
    • /
    • pp.18-23
    • /
    • 2013
  • In this study, the effects of cryogenic treatment cycles on the residual stress and mechanical properties of 7075 aluminum alloy (Al7075) samples, in the form of a tube-shaped product with a diameter of 500 nm, were investigated. Samples were first subjected to solution treatment at $470^{\circ}C$, followed by cryogenic treatment and aging treatment. The residual stress and mechanical properties of the samples were systematically characterized. Residual stress was measured with a cutting method using strain gauges attached on the surface of the samples; in addition, tensile strength and Vickers hardness tests were performed. The detailed microstructure of the samples was investigated by transmission electron microscopy. Results showed that samples with 85 % relief in residual stress and 8% increase in tensile strength were achieved after undergoing three cycles of cryogenic treatments; this is in contrast to the samples processed by conventional solution treatment and natural aging (T4). The major reasons for the smaller residual stress and relatively high tensile strength for the samples fabricated by cryogenic treatment are the formation of very small-sized precipitates and the relaxation of residual stress during the low temperature process in uphill quenching. In addition, samples subjected to three cycles of cryogenic treatment demonstrated much lower residual stress than, and similar tensile strength compared to, those samples subjected to one cycle of cryogenic treatment or artificial aging treatment.

Pre-slaughter stress, animal welfare, and its implication on meat quality

  • Choe, Jeehwan
    • Korean Journal of Agricultural Science
    • /
    • v.45 no.1
    • /
    • pp.58-65
    • /
    • 2018
  • Meat quality includes technological quality attributes, consumer acceptance, and credence characteristics. In terms of credence characteristics, animal welfare is one of the most interesting topics to both consumers and the livestock industry. Consumers prefer meat produced from livestock that has been raised in low stress and ecofriendly environments. The livestock industry cares about animal welfare to meet the requirements of consumers. Animal welfare is closely associated with the stress and physiological response of livestock to stress. Moreover, stress just before slaughter (i.e., pre-slaughter stress) has negative effects on not only animal welfare but also ultimately on meat quality. It is well-documented that pre-slaughter stress can influence ante- and post-mortem biological changes of the muscles, especially their metabolic properties and metabolites. The metabolic properties and metabolites contents also can modulate the postmortem changes of the muscles. Conversion of muscles to meat during postmortem is a very important process because it determines ultimately the meat quality. Thus, understanding pre-slaughter stress and physiological responses to stress in farm animals is important for animal welfare and meat quality. The purpose of this paper was to examine the concept of stress, physiological responses to stress, measurement of stress, and the relationships between stress indices and meat quality traits.

Evaluation of Residual Stress on Welded Joint in API X65 Pipe Line through Nondestructive Instrumented Indentation Technique (비파괴 계장화 압입시험기법을 통한 API X65 배관 용접부 잔류응력 평가)

  • 지원재;이윤희;김우식;김철만;권동일
    • Journal of Welding and Joining
    • /
    • v.21 no.5
    • /
    • pp.547-554
    • /
    • 2003
  • Apparent mechanical properties in structural components can be different from the initially designed values due to the formation of the residual stress in metal forming and welding. Therefore, the evaluation of residual stress has great importance in the reliability diagnosis of structural components. A nondestructive instrumented indentation technique has been proposed to evaluate various strength concerning mechanical properties from the analysis of load-depth curve. In this study, quantitative residual stress estimation on API X65 welded joints for natural gas pipeline was performed by analyzing the variation of indentation loading curve by residual stress through a new proposed theoretical model. The residual stress from the indentation method was compared with that from the saw-cutting method.