• Title/Summary/Keyword: properties with stress

Search Result 3,604, Processing Time 0.032 seconds

Effect of Substrate Temperature on the Emission Characteristics of ZnO Films Grown by Pulsed Laser Deposition (기판 온도의 영향에 따른 펄스레이저 증착법으로 성장된 ZnO 박막의 발광 특성)

  • Kim, Y.H.;Kim, S.I.
    • Journal of the Korean Vacuum Society
    • /
    • v.18 no.5
    • /
    • pp.358-364
    • /
    • 2009
  • We investigated the growth of ZnO thin films with prominent emission characteristics through minimizing the formation of defects by using pulsed laser deposition (PLD). To do so, the ZnO films were deposited on sapphire(0001) substrates at the substrate temperature of $400-850^{\circ}C$ and then the variation of their structural and optical properties were analyzed by x-ray diffraction, atomic force microscope and photoluminescence. As a result, all ZnO films were grown with c-axis preferential orientation irrespective of the substrate temperature. However, the crystallinity and stress state were dependent on the substrate temperature and the ZnO film deposited at $600^{\circ}C$ showed the best surface morphology and crystallinity with nearly no strain. And also this film exhibited outstanding emission characteristics from the viewpoint of full width half maximum of UV emission peak as well as visible emission due to defects. These results indicate that the emission characteristics of the ZnO films are strongly related to their structural characteristics influenced by substrate temperature. Consequently, ZnO films with strong UV emission and nearly no visible emission, which are applicable to UV emission devices, could be grown at the substrate temperature of $600^{\circ}C$ by PLD.

Production of Extrudates Formulated from Pacific Sand Lance Sauce By-Product and Dried Biji (까나리 액젓 부산물과 건조 비지를 첨가한 압출성형물의 제조)

  • Han, Gyu-Hong;Kim, Byung-Yong;Lee, Jae-Kwon
    • Korean Journal of Food Science and Technology
    • /
    • v.34 no.2
    • /
    • pp.186-193
    • /
    • 2002
  • This study was conducted to enhance the protein quality of wheat flour extrudates with the addition of fish sauce by-products and dried biji. The experimental design was used to determine the optimum ratio of each ingredient. The compositional and functional properties of test extrudate were measured, and these values were applied to the mathematical models. A canonical form and trace plot showed that the influence of each ingredient on the mixture final product. Protein content of extrudate was increased by the addition of the dried biji, and bending failure stress of extrudate became hardened due to interaction effects between dried biji and pacific sand lance sauce by-product. Also, the addition of dried biji decreased ash and salt contents. An optimum formulation was obtained as 15.83 : 44.17 : 40% with numerical and 15.74 : 44.26 : 26.40% with graphical method (pacific sand lance sauce by-product : dried biji : wheat flour). Based on the growth performance, feed conversion efficiency was slightly lower than control group, but the protein content in feed extrudate increased to a large extent compared to that mixed with wet biji.

Corrosion Characteristics of TiN/Ti Multilayer Coated Ti-30Ta-xZr Alloy for Biomaterials (TiN/Ti 다층막 코팅된 생체용 Ti-30Ta-xZr 합금의 부식특성)

  • Kim, Y.U.;Cho, J.Y.;Choe, H.C.
    • Corrosion Science and Technology
    • /
    • v.8 no.4
    • /
    • pp.162-169
    • /
    • 2009
  • Pure titanium and its alloys are drastically used in implant materials due to their excellent mechanical properties, high corrosion resistance and good biocompatibility. However, the widely used Ti-6Al-4V is found to release toxic ions (Al and V) into the body, leading to undesirable long-term effects. Ti-6Al-4V has much higher elastic modulus than cortical bone. Therefore, titanium alloys with low elastic modulus have been developed as biomaterials to minimize stress shielding. For this reason, Ti-30Ta-xZr alloy systems have been studied in this study. The Ti-30Ta containing Zr(5, 10 and 15 wt%) were 10 times melted to improve chemical homogeneity by using a vacuum furnace and then homogenized for 24 hrs at $1000^{\circ}C$. The specimens were cut and polished for corrosion test and Ti coating and then coated with TiN, respectively, by using DC magnetron sputtering method. The analyses of coated surface were carried out by field emission scanning electron microscope(FE-SEM). The electrochemical characteristics were examined using potentiodynamic (- 1500 mV~+ 2000 mV) and AC impedance spectroscopy(100 kHz~10 mHz) in 0.9% NaCl solution at $36.5{\pm}1^{\circ}C$. The equiaxed structure was changed to needle-like structure with increasing Zr content. The surface defects and structures were covered with TiN/Ti coated layer. From the polarization behavior in 0.9% NaCl solution, The corrosion current density of Ti-30Ta-xZr alloys decreased as Zr content increased, whereas, the corrosion potential of Ti-30Ta-xZr alloys increased as Zr content increased. The corrosion resistance of TiN/Ti-coated Ti-30Ta-xZr alloys were higher than that of the TiN-coated Ti-30Ta-xZr alloys. From the AC impedance in 0.9% NaCl solution, polarization resistance($R_p$) value of TiN/Ti coated Ti-30Ta-xZr alloys showed higher than that of TiN-coated Ti-30Ta-xZr alloys.

Physicochemical Properties of a Biopolymer Flocculant Produced from Bacillus subtilis PUL-A (Bacillus subtilis PUL-A로부터 생산된 Biopolymer 응집제의 물리화학적 특성)

  • Ryu, Mi-Jin;Jang, Eun-Kyung;Lee, Sam-Pin
    • Microbiology and Biotechnology Letters
    • /
    • v.35 no.3
    • /
    • pp.203-209
    • /
    • 2007
  • Soybean milk cake (SMC) was used for the solid-state fermentation by Bacillus subtilis PUL-A isolated from soybean milk cake. In the presence of 5% glutamate the maximum production of biopolymer (59.9 g/kg) was performed by fermentation at $42^{\circ}C$ for 24 hr. The recovered biopolymer was consisted of 87% $\gamma$-polyglutamic acid with molecular weight of $1.3{\times}10^6$ dalton and other biopolymer. The biopolymer solution showed the great decrease in consistency below pH 6.0, regardless of the molecular weight of PGA. Biopolymer solution has a typical pseudoplastic flow behavior and yield stress. The consistency of biopolymer solution was greatly decreased by increasing heating time and temperature in acidic condition compared to the alkaline condition. In kaolin clay suspension, the flocculating activity of biopolymer was the highest value with 15 mg/L biopolymer and 4.5 mM $CaCl_2$, but decreased greatly with $FeCl_3$. The flocculating activity of biopolymer was maximum at pH5, but decreased drastically by heating at $60{\sim}100^{\circ}C$. In particular, biopolymer with native PGA showed the efficient flocculating activity compared to that of modified biopolymer containing low molecular weight of PGA.

Background $K^+$ channel currents in WEHI-231 cells, immature B lymphocytes

  • Nam, Joo-Hyun;Woo, Ji-Eun;Kim, Tae-Jin;Uhm, Dae-Yong;Kim, Sung-Joon
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 2003.06a
    • /
    • pp.39-39
    • /
    • 2003
  • In our previous study, WEHI-231, an immature B cell line, showed intractable increase in [C $a^{2+}$]$_{c}$ after the B-cell receptor (BCR) ligation and treatment with 2-aminoethoxydiphenylborate (2-APB), which was never observed in Bal-17, a mature B cell line (Nam et al., 2003, FEBS Lett). In this study, a whole cell voltage clamp study revealed a specific expression of a novel type of $K^{+}$ current, namely voltage-independent background-type $K^{+}$ channels (IK-bg), in WEHI-231 cells. IK-bg was dramatically increase by the application of 2-APB (50 $\square$M), which induced severe hyperpolarization of WEHI-231 from -45 ㎷ to -90 ㎷, When dialyzed with $Mg^{2+}$ and ATP-free pipette solution, a spontaneous development of IK-bg and membrane hyperpolarization were observed. IK-bg was insensitive to classical $K^{+}$ channel blockers (TEA, glibenclamide, $Ba^{2+}$(1 mM)), whereas blocked by quinine and quinidine in a voltage-dependent manner ($IC_{50}$/=6~9 $\square$M at +60㎷). Phorbol myrstate, a PKC activator, decreased the amplitude of IK-bg. Extracellular acidification (pH 6.5) slightly inhibited IK-bg. Arachidonic acid, riluzole, or hyposmotic stress could not affect the IK-bg after the full development by the intracellular dialysis with Mg-ATP-free solution. In a cell-attached mode of single channel recording from WEHI231, we found two types of voltage-independent $K^{+}$ channels with unitary conductance of 300 pS and 120 pS, respectively. Both channels showed very short mean open times and their open probabilities were increase by the application of 2-APB. In Bal-17 cells, no such $K^{+}$ current was observed in 50 cells tested. In summary, WEHI-231 immature B cells express background $K^{+}$ channels. The pharmacological properties and the large unitary conductance suggest that novel types of two-pore domain $K^{+}$ channels (2-P-K channels) might be expressed in WEHI-231, which may provide an intriguing targets of signal transduction in the immature B lymphocytes.e B lymphocytes.

  • PDF

Predictions of Curvature Ductility Factor of Reinforced Concrete Beam Sections Used High Strength Concrete and Steel (고강도 재료를 사용한 철근콘크리트 보 단면의 곡률연성지수 예측)

  • Lee, Hyung Joon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.2
    • /
    • pp.483-493
    • /
    • 2013
  • The high strength materials have been more widely used in a large reinforced concrete structures. It is known that the use of high strength material in RC structures give the benefits of the mechanical and durable properties, but the ductility decreases with an increase in the strength of the materials. In the design of a reinforced concrete beam, both the flexural strength and ductility need to be considered. So, it is necessary to assess accurately the ductility of the beam with high strength materials in order to ensure the ductility requirement in design. In this study, the effects of the material strength on the flexural behavior and curvature ductility factor of reinforcement concrete beam sections with various reinforcement conditions have been evaluated and a newly prediction formula for curvature ductility factor of RC beam has been developed considering the stress of compression reinforcement at ultimate state. The proposed predictions for the curvature ductility factor which is applicable to both singly and doubly reinforced concrete beam are verified by comparisons with other prediction formulas and the proposed formula offers fairly accurate within 9% error and consistent predictions for curvature ductility factor of reinforced concrete beam.

A STUDY ON THE ADHESION OF A SOFT LINER CONTAINING 4-META TO THE BASE METAL ALLOY AND ITS VISCOELASTIC PROPERTY

  • Park Hyun-Joo;Kim Chang-Whe;Kim Yung-Soo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.41 no.6
    • /
    • pp.732-746
    • /
    • 2003
  • Statement of problem. Soft lining materials, also referred to as tissue conditioning materials, tissue heating materials, relining materials, soft liners or tissue conditioners, were first introduced to dentistry by a plastic manufacturer in 1959. Since the introduction of the materials to the dental field, their material properties have been continually improved through the effort of many researchers. Soft lining materials have become widely accepted, particularly by prosthodontists, because of their numerous clinical advantages and ease of manipulation. Unfortunately, few reports have been issued upon the topic of increasing the bond strength between the base metal alloy used in cast denture bases and PMMA soft liner modified with 4-META, nor upon the pattern of debonding and material change in wet environment like a intra oral situation. Purpose. The purposes of this study were comparing the bond strength between base metal alloy used for the cast denture bases and PMMA soft liner modified with 4-META, and describing the pattern of debonding and material property change in wet environment like the intraoral situation. Material and Methods. This study consisted of four experiments: 1. The in vitro measurement of shear bond strength of the adhesive soft liner. 2. The in vitro measurement of shear bond strength of the adhesive soft liner after 2 weeks of aging. 3. A comparison of debonding patterns. 4. An evaluation the Relation time of modified soft liner. The soft liner used in this study was commercially available as Coe-soft (GC America.IL.,USA), which is provided in forms of powder and liquid. This is a PMMA soft liner commonly used in dental clinics. The metal primer used in this study was 4-META containing primer packed in Meta fast denture base resin (Sun Medical Co., Osaka, Japan). The specimens were formed in a single lap joint desist which is useful for evaluating the apparent shear bond strength of adhesively bonded metal plate by tensile loading. Using the $20{\times}20mm$ transparent grid, percent area of adhesive soft liner remaining on the shear area was calculated to classify the debonding patterns. To evaluate the change of the initial flow of the modified adhesive soft liner, the gelation time was measured with an oscillating rheometer (Haake RS150W/ TC50, Haake Co., Germany). It was a stress control and parallel plate type with the diameter of 35mm. Conclusion. Within the conditions and limitations of this study, the following conclusions were drawn as follows. 1. There was significant increase of bond strength in the 5% 4-META, 10% 4-META containing groups and in the primer coated groups versus the control group(P<0.05). 2. After 2 weeks of aging, no significant increase in bond strength was found except for the group containing 10% 4-META (P<0.05). 3. The gelation times of the modified soft liner were 9.3 minutes for the 5% 4-META containing liner and 11.5 minutes for the 10% 4-META liner. 4. The debonding patterns of the 4-META containing group after 2 weeks of aging were similar to those of immediaely after preparation, but the debonding pattern of the primer group showed more adhesive failure after 2 weeks of aging.

An accurate analytical model for the buckling analysis of FG-CNT reinforced composite beams resting on an elastic foundation with arbitrary boundary conditions

  • Aicha Remil;Mohamed-Ouejdi Belarbi;Aicha Bessaim;Mohammed Sid Ahmed Houari;Ahmed Bouamoud;Ahmed Amine Daikh;Abderrahmane Mouffoki;Abdelouahed Tounsi;Amin Hamdi;Mohamed A. Eltaher
    • Computers and Concrete
    • /
    • v.31 no.3
    • /
    • pp.267-276
    • /
    • 2023
  • The main purpose of the current research is to develop an efficient two variables trigonometric shear deformation beam theory to investigate the buckling behavior of symmetric and non-symmetric functionally graded carbon nanotubes reinforced composite (FG-CNTRC) beam resting on an elastic foundation with various boundary conditions. The proposed theory obviates the use to shear correction factors as it satisfies the parabolic variation of through-thickness shear stress distribution. The composite beam is made of a polymeric matrix reinforced by aligned and distributed single-walled carbon nanotubes (SWCNTs) with different patterns of reinforcement. The material properties of the FG-CNTRC beam are estimated by using the rule of mixture. The governing equilibrium equations are solved by using new analytical solutions based on the Galerkin method. The robustness and accuracy of the proposed analytical model are demonstrated by comparing its results with those available by other researchers in the existing literature. Moreover, a comprehensive parametric study is presented and discussed in detail to show the effects of CNTs volume fraction, distribution patterns of CNTs, boundary conditions, length-to-thickness ratio, and spring constant factors on the buckling response of FG-CNTRC beam. Some new referential results are reported for the first time, which will serve as a benchmark for future research.

Study of the Static Shear Behaviors of Artificial Jointed Rock Specimens Utilizing a Compact CNS Shear Box (Compact CNS shear box를 활용한 모의 절리암석시료의 정적 전단 거동에 관한 연구)

  • Hanlim Kim;Gyeongjo Min;Gyeonggyu Kim;Youngjun Kim;Kyungjae Yun;Jusuk Yang;Sangho Bae;Sangho Cho
    • Tunnel and Underground Space
    • /
    • v.33 no.6
    • /
    • pp.574-593
    • /
    • 2023
  • In this study, the effectiveness and applicability of a newly designed Compact CNS shear box for conducting direct shear tests on jointed rock specimens were investigated. CNS joint shear tests were conducted on jointed rocks with Artificially generated roughness while varying the fracture surface roughness coefficient and initial normal stress conditions. In addition, displacement data were validated by Digital image correlation analysis, fracture patterns were observed, and comparative analysis was conducted with previously studied shear behavior prediction models. Furthermore, the accuracy of the displacement data was confirmed through DIC analysis, the fracture patterns were observed, and the shear properties obtained from the tests were compared with existing models that predict shear behavior. The findings exhibited a strong correlation with specific established empirical models for predicting shear behavior. Furthermore, the potential linkage between the characteristics of shear behavior and fracture patterns was deliberated. In conclusion, the CNS shear box was shown to be applicable and effective in providing data on the shear characteristics of the joint.

Conductive Performance of Mortar Containing Fe-Activated Biochar (Fe에 의해 활성화된 목질계 바이오차를 혼입한 모르타르의 전도성능)

  • Jin-Seok Woo;Ai-Hua Jin;Won-Chang Choi;Soo-Yeon Seo;Hyun-Do Yun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.28 no.2
    • /
    • pp.27-34
    • /
    • 2024
  • This study was conducted to examine the feasibility of using Fe-activated wood-derived biochar as a conductive filler for manufacturing cement-based strain sensor. To evaluate the compressive and electrical properties of cement composite with 3% Fe-activated biochar, three cubic specimens of size 50 x 50 x 50mm3 and three prismatic cement-based sensors of size 40 x 40 x 80mm3 were prepared respectively. The four-probe method of electrical resistance measurement was used for cement-based sensors. For cement-based sensors with FE-activated biochar, the conductive performance such as electrical resistance and impedance under different water content and repeated compression was investigated. Results showed that the fractional changes in the DC electrical resistivity of cement-based sensors increase with increasing time and the maximum fractional changes in the resistivity decrease with increasing the moisture contents during 900s. At moisture content of 7.5% range, the conductive performance of cement composite including 3% Fe-activated biochar as a conductive filler showed the most stable, while the strain detection ability tended to decrease somewhat as the repeated compressive stress increased between repeated compressive strain and fractional change in resistivity (FCR).