• Title/Summary/Keyword: properties with stress

Search Result 3,604, Processing Time 0.036 seconds

Simulation study on the mechanical properties and failure characteristics of rocks with double holes and fractures

  • Pan, Haiyang;Jiang, Ning;Gao, Zhiyou;Liang, Xiao;Yin, Dawei
    • Geomechanics and Engineering
    • /
    • v.30 no.1
    • /
    • pp.93-105
    • /
    • 2022
  • With the exploitation of natural resources in China, underground resource extraction and underground space development, as well as other engineering activities are increasing, resulting in the creation of many defective rocks. In this paper, uniaxial compression tests were performed on rocks with double holes and fractures at different angles using particle flow code (PFC2D) numerical simulations and laboratory experiments. The failure behavior and mechanical properties of rock samples with holes and fractures at different angles were analyzed. The failure modes of rock with defects at different angles were identified. The fracture propagation and stress evolution characteristics of rock with fractures at different angles were determined. The results reveal that compared to intact rocks, the peak stress, elastic modulus, peak strain, initiation stress, and damage stress of fractured rocks with different fracture angles around holes are lower. As the fracture angle increases, the gap in mechanical properties between the defective rock and the intact rock gradually decreased. In the force chain diagram, the compressive stress concentration range of the combined defect of cracks and holes starts to decrease, and the model is gradually destroyed as the tensile stress range gradually increases. When the peak stress is reached, the acoustic emission energy is highest and the rock undergoes brittle damage. Through a comparative study using laboratory tests, the results of laboratory real rocks and numerical simulation experiments were verified and the macroscopic failure characteristics of the real and simulated rocks were determined to be similar. This study can help us correctly understand the mechanical properties of rocks with defects and provide theoretical guidance for practical rock engineering.

Effect of Thermal Exposure and Rejuvenation Treatment on Microstructure and Stress Rupture Properties of IN738LC (IN738LC 합금의 열간 노출 및 재생 열처리에 따른 미세조직과 응력 파단 특성의 변화)

  • Choe, Baek-Gyu;Ju, Dong-Won;Kim, In-Su;Jang, Jung-Cheol;Jo, Chang-Yong
    • Korean Journal of Materials Research
    • /
    • v.11 no.11
    • /
    • pp.915-922
    • /
    • 2001
  • Effects of thermal exposure and rejuvenation treatment on the microstructural evolution and the stress-rupture properties of IN738LC have been investigated. The role of precipitates on the stress-rupture properties has been analyzed through microstructural observations. Thermal exposure at $982^{\circ}C$ for 1000 hours gave rise to precipitation of $\sigma$ phase and coarsening of r'. The microstructural degradation with thermal exposure at $982^{\circ}C$ deteriorated stress rupture properties of the alloy. All the existing phases except MC carbides have completely dissolved into the matrix with homogenization treatment at $1200^{\circ}C$ for 2 hours. Microstructure and stress-rupture properties of the thermal exposed specimens have been successfully rejuvenated by the proposed treatment.

  • PDF

Effect of Thermal Exposure and Rejuvenation Treatment on Microstructure and Stress Rupture Properties of IN738LC (IN738LC 합금의 열간 노출 및 재생 열처리에 따른 미세조직과 응력 파단 특성의 변화)

  • Choe, Baek-Gyu;Ju, Dong-Won;Kim, In-Su;Jang, Jung-Cheol;Jo, Chang-Yong
    • Korean Journal of Materials Research
    • /
    • v.11 no.10
    • /
    • pp.833-840
    • /
    • 2001
  • Effects of thermal exposure and rejuvenation treatment on the microstructural evolution and the stress-rupture properties of IN738LC have been investigated. The role of precipitates on the stress- rupture properties has been analyzed through microstructural observations. Thermal exposure at $982^{\circ}C$ for 1000 hours gave rise to precipitation of $\sigma$ phase and coarsening of ${\gamma}$'. The microstructural degradation with thermal exposure at $982^{\circ}C$ deteriorated stress rupture properties of the alloy. All the existing phases except MC carbides have completely dissolved into the matrix with homogenization treatment at $1200^{\circ}C$ for 2 hours. Microstructure and stress-rupture properties of the thermal exposed specimens have been successfully rejuvenated by the proposed treatment.

  • PDF

Dynamic Stress Intensity Factor $K_{IIID}$ for a Propagating Crack in Liner Functionally Gradient Materials Along X Direction (X방향의 선형함수구배인 재료에서 전파하는 균열의 동적응력확대계수 $K_{IIID}$)

  • Lee, Kwang-Ho
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.3-8
    • /
    • 2001
  • Dynamic stress intensity factors (DSIFs) are obtained when a crack propagates with constant velocity in rectangular functionally gradient materials (FGMs) under dynamic mode III load. To obtain the dynamic stress intensity factors, it is used the general stress and displacement fields of FGMs for propagating crack and the boundary collocation method (BCM). The stress intensity factors and energy release rates are the greatest in the increasing properties $(\xi>0)$, next constant properties $(\x=0)$ and decreasing properties $(\xi<0)$ under constant crack tip properties and crack tip speed.

  • PDF

Improvement of Chloride Induced Stress Corrosion Cracking Resistance of Welded 304L Stainless Steel by Ultrasonic Shot Peening

  • Hyunhak Cho;Young Ran Yoo;Young Sik Kim
    • Corrosion Science and Technology
    • /
    • v.23 no.4
    • /
    • pp.266-277
    • /
    • 2024
  • Due to its good corrosion and heat resistance with excellent mechanical properties, 304L stainless steel is commonly used in the fabrication of spent nuclear fuel dry storage canisters. However, welds are sensitive to stress corrosion cracking (SCC) due to residual stress generation. Although SCC resistance can be improved by stress relieving the weld and changing the chloride environment, it is difficult to change corrosion environment for certain applications. Stress control in the weld can improve SCC resistance. Ultrasonic shot peening (USP) needs further research as compressive residual stresses and microstructure changes due to plastic deformation may play a role in improving SCC resistance. In this study, 304L stainless steel was welded to generate residual stresses and exposed to a chloride environment after USP treatment to improve SCC properties. Effects of USP on SCC resistance and crack growth of specimens with compressive residual stresses generated more than 1 mm from the surface were studied. In addition, correlations of compressive residual stress, grain size, intergranular corrosion properties, and pitting potential with crack propagation rate were determined and the improvement of SCC properties by USP was analyzed.

The simple measurement of physical properties and stress fringe value for photo-elastic orthotropic material (광탄성 직교이방성체의 물성치와 응력 프린지치 간이 측정법)

  • 황재석;이광호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.1
    • /
    • pp.23-36
    • /
    • 1990
  • The various composite materials have been developed with the development of high strength material and the increasement of composite material usage. Therefore many researchers have studied about the stress analysis and the fracture mechanics for composite materials through the experiment or the theory. Among the experimental methods, the photoelastic experiments have been used for the stress analysis of the isotropic structures or the anisotropic structures. To analyze the stresses in the orthotropic material with photoelastic experiment, the basic physical properties ( $E_{L}$, $E_{T}$, $G_{LT}$ , .nu.$_{LT}$ ) and the basic stress fringe values ( $f_{L}$, $f_{T}$, $f_{LT}$ )are needed, therefore the relationships between the basic physical properties and the stress fringe values were derived in this paper. When the stress fringe value is very large, it was assured by the experiment that the relationships are established both in the room temperature and in the high temperature (T = 130.deg. C). Therefore the basic physical properties can be obtained from the relationships by measuring stress fringe values instead of measuring the basic physical properties.rties.

N.M.for the Effect of P.T. on Resicual Stress Relaxation (잔류응력 완화에 미치는 상변태의 수치적 모델링)

  • 장경복;손금렬;강성수
    • Journal of Welding and Joining
    • /
    • v.17 no.6
    • /
    • pp.84-89
    • /
    • 1999
  • Most of ferrous b.c.c weld materials may experience martensitic transformation during rapid cooling after welding. It is well known that volume expansion due to the phase transformation could influence on the relaxation of welding residual stress. To apply this effect practically, it is a prerequisite to establish a numerical model which is able to estimate the effect of phase transformation on residual stress relaxation quantitatively. For this purpose, the analysis is carried out in two regions. i.e., heating and cooling, because the variation of material properties following a phase transformation in cooling is different in comparison with the case in heating, even at the same temperature. The variation of material properties following phase transformation is considered by the adjustment of specific heat and thermal expansion coefficient, and the distribution of residual stress in analysis is compared with that of experiment by previous study. consequently, in this study, simplified numerical procedures considering phase transformation, which based on a commercial finite element package was established through comparing with the experimental data of residual stress distribution by other researcher. To consider the phase transformation effect on residual stress relaxation, the transition of mechanical and thermal property such as thermal expansion coefficient and specific heat capacity was found by try and error method in this analysis.

  • PDF

Evaluation of Tensile Properties in Small Punch Test Using Finite Element Analysis (유한요소해석을 이용한 소형펀치시험에서의 인장물성평가)

  • Lee, Jae-Bong;Kim, Min-Chul;Park, Jai-Hak;Lee, Bong-Sang
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.31-36
    • /
    • 2003
  • In this study a relationship between SP curves and tensile properties was investigated by FE analysis on SP test with various assumed tensile properties. For the accuracy of FE analysis, SP test and tensile test were performed and those results were compared with FE analysis results. The yield load(Py) defined from the intersection point of two lines tangent to the elastic bending region and plastic bending region. And it was related specifically with yield stress(${\sigma}_0$) in FE analysis result curves. The slopes of FE analysis result curves normalized by yield stress(${\sigma}_0$) reflected the change of tensile properties regardless of yield stress(${\sigma}_0$) variation. Empirical relations were derived from these results. Tensile properties from these relations showed good agreement in FE analysis curve and tested curve.

  • PDF

Unified prediction models for mechanical properties and stress-strain relationship of dune sand concrete

  • Said Ikram Sadat;Fa-xing Ding;Fei Lyu;Naqi Lessani;Xiaoyu Liu;Jian Yang
    • Computers and Concrete
    • /
    • v.32 no.6
    • /
    • pp.595-606
    • /
    • 2023
  • Dune sand (DS) has been widely used as a partial replacement for regular sand in concrete construction. Therefore, investigating its mechanical properties is critical for the analysis and design of structural elements using DS as a construction material. This paper presents a comprehensive investigation of the mechanical properties of DS concrete, considering different replacement ratios and strength grades. Regression analysis is utilized to develop strength prediction models for different mechanical properties of DS concrete. The proposed models exhibit high calculation accuracy, with R2 values of 0.996, 0.991, 0.982, and 0.989 for cube compressive strength, axial compressive strength, splitting tensile strength, and elastic modulus, respectively, and an error within ±20%. Furthermore, a stress-strain relationship specific to DS concrete is established, showing good agreement with experimental results. Additionally, nonlinear finite element analysis is performed on concrete-filled steel tube columns incorporating DS concrete, utilizing the established stress-strain relationship. The analytical and experimental results exhibit good agreement, confirming the validity of the proposed stress-strain relationship for DS concrete. Therefore, the findings presented in this paper provide valuable references for the design and analysis of structures utilizing DS concrete as a construction material.

The Study on Relationship Between Thermal Stress Properties and Thermal Shrinkage of PET Filament Yarns (PET 필라멘트사의 열응력특성과 열수축율과의 상관성연구)

  • 김영진;김승진;김태훈;김경렬;박인동
    • Textile Coloration and Finishing
    • /
    • v.10 no.2
    • /
    • pp.45-54
    • /
    • 1998
  • This study surveys relation between thermal shrinkage and thermal stress properties after process simulation of heat treatment with various PET filament yarns. For this purpose, 12 kinds of regular yarns and POY, 6 kinds of DTY and 5 kinds of composite yarns were experimented for investigating step thermal shrinkage, total thermal shrinkage and total thermal stress and maximum thermal stress temperature. Thermal stress and shrinkage of the various specimens treated with wet and dry heats were analysed and discussed with the conditions of heat treatment. finally, relationship between thermal stress and shrinkage of the various PET filaments such as regular yarns, POY, DTY and composite yarns were investigated with the PET filament characteristics.

  • PDF