• Title/Summary/Keyword: properties prediction

Search Result 1,804, Processing Time 0.026 seconds

Temperature-dependent Mullins Effect in Anti-vibration Rubber for Railway Vehicles (철도 차량용 방진고무의 온도에 따른 뮬린스 효과)

  • Oh, Sunghun;Lee, Su-Yeong;You, Jihye;Kim, Hong Seok;Cheong, Seong-Kyun;Shin, Ki-Hoon
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.26 no.2
    • /
    • pp.193-198
    • /
    • 2017
  • Rubber materials are widely used for anti-vibration in various industries such as railways, automobile, and aviation. However, various factors hinder the accurate prediction of mechanical properties and lifetime of these materials. Particularly, a stress softening phenomenon Mullins effect greatly affects the accuracy of test results by reducing the initial peak stress. Although the Mullins effect has been studied previously, research on its temperature dependence is lacking. In this study, we performed experiments to estimate the temperature dependence of the Mullins effect. Dumbbell specimens made of natural rubber (NR65) was mounted on a stress softening tester and placed in a heat chamber, where they were tested at temperature of 25, 50, and $80^{\circ}C$. Further, five test sets, each consisting of 10 loading/unloading cycles were sequentially performed at predetermined time intervals. Based on the test results, we assessed the effect of temperature and time interval on stress softening and recovery.

Prediction of Steady-State Stresses within Heat Affected Zone Due to Creep Mismatch in Welded Straight Pipes (직관 용접부의 크리프 특성 불균일에 따른 열영향부 정상상태 응력 예측)

  • Han, Jae-Jun;Kim, Sang-Hyun;Chung, Jin-Taek;Kim, Yun-Jae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.3
    • /
    • pp.405-412
    • /
    • 2013
  • This paper reports the steady-state stresses within the heat affected zone (HAZ) of a welded straight pipe subject to creep. The creep constants and exponent are varied systematically to see the effect of various mismatches in creep properties on the steady-state creep stresses, via detailed two-dimensional finite element (FE) creep analyses. The weldments consist of the base metal and weld metal with the HAZ, which are characterized using the idealized power creep laws with the same creep exponent. The internal pressure and axial loading are considered to see the effect of the loading mode. To quantify the creep stresses, a creep mismatch factor is introduced as a function of the creep constants and exponent. It is concluded that the ratio of the section-averaged stresses for a mismatched case to those for an evenmatched case are linearly dependent on the mismatch factor. The results are compared with the FE results, including the Type IV region, as well as the R5 procedure.

Fatigue Behavior of STS316L Weldments and Degradation Characteristic Evaluation by Ultrasonic Test (STS316L 용접부의 피로거동 및 초음파시험에 의한 열화특성 평가)

  • Nam, Ki-Woo;Park, So-Soon;Ahn, Seok-Hwan;Do, Jae-Yoon;Park, In-Duck
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.23 no.2
    • /
    • pp.156-164
    • /
    • 2003
  • STS316L had been used as the structural material for energy environmental facilities, because austenite stainless steels like 316L have superior mechanical properties of which toughness, ductility, corrosion resistant and etc. However, those welded structures are receiving severe damage due to increasing of the aged degradation. Most studies until now have been carried out against fatigue behaviors of weldments, and were not well studied on nondestructive evaluation methods. In this study, the fatigue crack propagation behavior of STS316L weldment usually used for vessels of the nuclear power plant was investigated. Also, the degradation characteristics of 316L stainless steel weldments were evaluated by the ultrasonic parameter such as ultrasonic velocity, attenuation factor and time-frequency analysis. The results of this study can be used as a basic data for the prediction of the fatigue crack life of weldments structures without disjointing or stopping service of structures in service.

Evaluation of Engineering Characteristics of Aggregate Base Materials and Developing the Empirical Correlation Model (입도조정기층 재료의 공학적 특성 평가 및 경험적 상관모형 개발)

  • Kweon, Gi-Chul;Lee, Seung-Jun;Lee, Ung-Se
    • International Journal of Highway Engineering
    • /
    • v.12 no.2
    • /
    • pp.115-121
    • /
    • 2010
  • To evaluate the engineering characteristics of aggregate base materials, cyclic triaxial, CBR and permeability tests were performed for 15 samples. The CBR values of aggregate base materials have wide range from 32 to 110(average 81) and the amount of swelling in submerged conditions has below 0.04mm. The Modulus of aggregate base materials were significantly affected by volumetric stress, linear volumetric model was best for fitting. The modulus of aggregate base materials were determined within range of 100MPa~600MPa, 80~270 and 0.1~0.6 for model coefficient $k_1$ and $k_2$ respectively. The empirical correlation model was suggested that prediction the modulus from the basic properties obtained from particle size distribution test and compaction test. The coefficient of determination of the proposed correlation model was 0.423 for model coefficient $k_1$, 0.920 for model coefficient $k_2$ and 0.872 for modulus with stress level.

The Study on Association of Calcium Channel SNPs with Adverse Drug Reaction of Calcium Channel Blocker in Korean

  • Chung, Myeon-Woo;Bang, Sy-Rie;Jin, Sun-Kyung;Woo, Sun-Wook;Lee, Yoon-Jung;Kim, Young-Sik;Lee, Jong-Keuk;Lee, Sung-Ho;Roh, Jae-Sook;Chung, Hye-Joo
    • Biomolecules & Therapeutics
    • /
    • v.15 no.3
    • /
    • pp.156-161
    • /
    • 2007
  • Rapid advances in pharmacogenomic research have provided important information to improve drug selection, to maximize drug efficacy, and to minimize drug adverse reaction. The SNPs that are the most abundant type of genetic variants have been proven as valid biomarkers to give information on the prediction of pharmacokinetic/pharmacodynamic properties of drugs based on genotype. In order to elucidate a correlation between SNPs of calcium channel encoding gene and adverse reactions of calcium channel blockers, we investigated SNPs in CACNA1C gene known as a binding site of calcium channel blocker. 96 patients with hypertension who had taken or are taking an antihypertensive drug, 1,4-dihydropyridine (DHP) were included for analysis. These patients were composed of 47 patients with adverse drug reactions (ADR) such as edema from calcium channel blockers and 49 patients without ADR as a control group. The exons encoding the drug binding sites were amplified by PCR using specific primers, and SNPs were analyzed by direct sequencing. We found that there was no SNP in the exons encoding DHP binding site, but four novel SNPs in the exon-intron junction region. However, four novel SNPs were not associated with the ADR of calcium channel blockers. In conclusion, this study showed that ADR from calcium channel blockers may not be caused by SNPs of the binding sites of calcium channel blockers in CACNA1C gene.

Machine Vision Technique for Rapid Measurement of Soybean Seed Vigor

  • Lee, Hoonsoo;Huy, Tran Quoc;Park, Eunsoo;Bae, Hyung-Jin;Baek, Insuck;Kim, Moon S.;Mo, Changyeun;Cho, Byoung-Kwan
    • Journal of Biosystems Engineering
    • /
    • v.42 no.3
    • /
    • pp.227-233
    • /
    • 2017
  • Purpose: Morphological properties of soybean roots are important indicators of the vigor of the seed, which determines the survival rate of the seedlings grown. The current vigor test for soybean seeds is manual measurement with the human eye. This study describes an application of a machine vision technique for rapid measurement of soybean seed vigor to replace the time-consuming and labor-intensive conventional method. Methods: A CCD camera was used to obtain color images of seeds during germination. Image processing techniques were used to obtain root segmentation. The various morphological parameters, such as primary root length, total root length, total surface area, average diameter, and branching points of roots were calculated from a root skeleton image using a customized pixel-based image processing algorithm. Results: The measurement accuracy of the machine vision system ranged from 92.6% to 98.8%, with accuracies of 96.2% for primary root length and 96.4% for total root length, compared to manual measurement. The correlation coefficient for each measurement was 0.999 with a standard error of prediction of 1.16 mm for primary root length and 0.97 mm for total root length. Conclusions: The developed machine vision system showed good performance for the morphological measurement of soybean roots. This image analysis algorithm, combined with a simple color camera, can be used as an alternative to the conventional seed vigor test method.

Electrostatic Interaction between Mercaptoundecanoic-acid Layers on Gold and ZrO2 Surfaces (금 표면 위의 메르캡토언데카노익산층 표면과 이산화지르코늄 표면 사이의 정전기적 상호작용)

  • Park, Jin-Won
    • Applied Chemistry for Engineering
    • /
    • v.25 no.6
    • /
    • pp.607-612
    • /
    • 2014
  • The physical properties of mercaptoundecanoic-acid layer formed on gold surfaces, which may affect the distribution of either gold particles adsorbed to the zirconium dioxide surface or vice versa, were investigated. To conduct this investigation, the surface forces were measured between the surfaces with respect to the salt concentration and pH value using atomic force microscope (AFM). The forces were quantitatively converted by the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory to the surface potential and charge density of surfaces. The converted-value dependence on the salt concentration and pH was described with the law of mass action, and the dependence was consistent with the theoretical prediction. It was found that the mercaptoundecanoic-acid layer had higher values for the surface charge densities and potentials than the $ZrO_2$ surfaces, which may be attributed to the ionized-functional-groups of the mercaptoundecanoic-acid layer.

Statistical Life Prediction of Corroded Pipeline Using Bayesian Inference (베이지안 추론법을 이용한 부식된 배관의 통계적 수명예측)

  • Noh, Yoojeong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.4
    • /
    • pp.2401-2406
    • /
    • 2015
  • Pipelines are used by large heavy industries to deliver various types of fluids. Since this is important to maintain the performance of large systems, it is necessary to accurately predict remaining life of the corroded pipeline. However, predicting the remaining life is difficult due to uncertainties in the associated variables, such as geometries, material properties, corrosion rate, etc. In this paper, a statistical method for predicting corrosion remaining life is proposed using Bayesian inference. To accomplish this, pipeline failure probability was calculated using prior information about pipeline failure pressure according to elapsed time, and the given experimental data based on Bayes' rule. The corrosion remaining life was calculated as the elapsed time with 10 % failure probability. Using 10 and 50 samples generated from random variables affecting the corrosion of the pipe, the pipeline failure probability was estimated, after which the estimated remaining useful life was compared with the assumed true remaining useful life.

Prediction of the Clothing Pressure Using the Radii of Double Curvature and Transformation of a Fabric (인체의 복곡면과 직물 변형 특성을 이용한 의복압 예측법의 개선)

  • Lee, Ye-Jin;Hong, Kyung-Hi
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.29 no.8 s.145
    • /
    • pp.1168-1175
    • /
    • 2005
  • Clothing pressure has close relation with clothing comfort and depends on the pattern and properties of textile fabrics. Choosing a suitable clothing pressure is an essential factor for designing functional clothing such as the foundation for reshaping of a body contour or medical items for bum patient, and etc. However, it is hard to measure pressure values at the curved surface of a human body correctly. Recently, an air pack type pressure sensor, which has relatively excellent performance has been used to measure clothing pressure, however, it is still inconvenient to apply because it is a contact- type sensor. Therefore, in this paper, we suggest an indirect method that can measure clothing pressure without touching the subject by improving the equation of Kirk and Ibrahim (1966). However, confusions have been occurred when someone use the equation since the definition of parameters are somewhat vague. Furthermore, the estimated clothing pressure obtained by the previous method are quite different from the real values because this method does not consider the 3D effect of a human body and property changes of a transformed fabric. In this paper, the direction of principal stress and the radius of curvature in the principal direction were searched in the 3D image of the deformed girdle to get more accurate clothing pressure. The estimated clothing pressure was verified by comparing the result of the air pack type pressure sensor. It was found that the accuracy of the pressure estimation was improved by considering the 3D curvature of human body and the directional characteristics of textile fabrics.

The Analysis of Creep characteristics for Turbine blade using Theta projection method (θ 투영법을 이용한 터빈 블레이드의 크리프 특성 분석)

  • Lee, Mu-Hyoung;Han, Won-Jae;Jang, Byung-Wook;Lee, Bok-Won;Park, Jung-Sun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.4
    • /
    • pp.321-331
    • /
    • 2011
  • The present work is aimed to analyze the creep characteristics of a turbojet engine turbine blade using the theta projection method. The theta projection method has been widely used due to its advantages and flexibility. For the creep characteristic analysis of the turbine blade, tests are performed considering the operating conditions and the non-linear material properties. Results from the creep test are fitted using the four theta model. The predicted proprieties using the four theta model are compared with the prediction model and creep test results. To obtain an optimum value of the four theta parameters in non-linear square method, a number of computing processes in the non-linear least square method were carried out to obtain full creep curves. Results using the theta model has more than 0.95 value of $R^2$. The results between the experimental values and predicted four theta model has about 90.0% accuracy. The theta projection method can be utilized for a design purpose to predict the creep behavior.