• Title/Summary/Keyword: properties prediction

Search Result 1,805, Processing Time 0.027 seconds

Measurement and Prediction of the Flash Point for the Flammable Binary Mixtures using Tag Open-Cup Apparatus (Tag식 개방계 장치를 이용한 가연성 이성분계 혼합물의 인화점 측정 및 예측)

  • Ha, Dong-Myeong;Lee, Sungjin;Song, Young-Ho
    • Korean Chemical Engineering Research
    • /
    • v.43 no.1
    • /
    • pp.181-185
    • /
    • 2005
  • The flash point is one of the most important combustible properties used to determine the potential for fire and explosion hazards of industrial material. An accurate knowledge of the flash point is important in developing appropriate preventive and control measures in industrial fire protection. The flash points for the n-butanol+n-propionic acid and n-propanol+n-propionic acid systems were measured by using Tag open-cup apparatus(ASTM D 1310-86). The experimental data were compared with the values calculated by the laws of Raoult and van Laar equation. The calculated values based on the van Laar equation were found to be better than those based on the Raoult's law.

An Integrated Design System Using Knowledge-Based Approach for the Rational Design of Injection-Molded Part and Mold (합리적 사출제품금형설계를 위한 지식형 통합설계시스템)

  • 허용정
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.2 no.2
    • /
    • pp.115-119
    • /
    • 2001
  • The design and manufacture of injection molded polymeric parts with desired properties is a costly process dominated by empiricism, including the repeated modification of actual tooling. This paper presents an knowledge-based synthesis system which can predict the mechanical performance of a molded product and diagnose the design before the actual mold is machined. The knowledge-based system synergistically combines a rule-based system with CAE programs. Hueristic know]edge of injection molding. flow simulation, and mechanical performance prediction is formalized as rules of an expert consultation system. The expert system interprets the analytical results of the process simulation, predicts the performance, evaluates the design and generates recommendation for optimal design alternatives.

  • PDF

Calculation of Stiffnesses Properties for Composite Box-Beams with Elastic Couplings (구조연성을 고려한 복합재료 상자형 보의 강성계수 예측에 관한 연구)

  • 정성남;동경민
    • Composites Research
    • /
    • v.14 no.6
    • /
    • pp.9-15
    • /
    • 2001
  • In the present work, a linear static analysis is presented for thin-walled prismatic box-beams made of generally anisotropic materials. A mixed beam theory has been used to model and carry out the analysis. Several different constitutive assumptions for the shell-wall of the beam section are assessed into the beam formulation. Simple layup cases of box-beams representing bending-torsion or extension-torsion coupled configuration have been considered and tested to clearly show the effects of elastic couplings of the beam. A detailed finite element structural analysis using the MSC/NASTRAN has been carried out to validate the current analytical results. Numerical results show that appropriate assumptions for the constitutive relations are important and crucial for the accurate prediction of beam stiffness constants and also thor the beam behavior.

  • PDF

Fast Quadtree Based Normalized Cross Correlation Method for Fractal Video Compression using FFT

  • Chaudhari, R.E.;Dhok, S.B.
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.2
    • /
    • pp.519-528
    • /
    • 2016
  • In order to achieve fast computational speed with good visual quality of output video, we propose a frequency domain based new fractal video compression scheme. Normalized cross correlation is used to find the structural self similar domain block for the input range block. To increase the searching speed, cross correlation is implemented in the frequency domain using FFT with one computational operation for all the domain blocks instead of individual block wise calculations. The encoding time is further minimized by applying rotation and reflection DFT properties to the IFFT of zero padded range blocks. The energy of overlap small size domain blocks is pre-computed for the entire reference frame and retaining the energies of the overlapped search window portion of previous adjacent block. Quadtree decompositions are obtained by using domain block motion compensated prediction error as a threshold to control the further partitions of the block. It provides a better level of adaption to the scene contents than fixed block size approach. The result shows that, on average, the proposed method can raise the encoding speed by 48.8 % and 90 % higher than NHEXS and CPM/NCIM algorithms respectively. The compression ratio and PSNR of the proposed method is increased by 15.41 and 0.89 dB higher than that of NHEXS on average. For low bit rate videos, the proposed algorithm achieve the high compression ratio above 120 with more than 31 dB PSNR.

Three-dimensional Numerical Study on Acoustic Performance of Large Splitter Silencers (대형 스플리터 소음기 성능에 대한 3차원 수치해석적 연구)

  • Baek, Seonghyeon;Lee, Changheon;Gwon, Daehun;Lee, Iljae
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.27 no.2
    • /
    • pp.139-147
    • /
    • 2017
  • Acoustic performance of splitter silencers was investigated by using 3-dimensional commercial software and experiments. Flow resistivity of sound absorbing material was indirectly estimated by using an impedance tube setup and a curve fitting method. In addition the acoustic impedance of perforated plate was determined by an empirical formulation. Such properties have been used as input parameters in the commercial software. The prediction for a splitter silencer with 1000 mm length was compared with the experimental result. The numerical method is then applied to identify the effects of number of splitters, length of splitters, absorptive material density, and porosity of a perforated plate on the performance of the splitter silencers. As the number and length of splitter increases, the acoustic performance significantly increases. Although the increase of density of absorptive material also increase the acoustic performance, a change in the density over a certain level hardly affect it. The increase of porosity will enhance the performance especially at higher frequencies.

An Instance of Selecting Retention Chemicals Based on Simultaneous Analysis of Retention, Drainage and Formation of RDA (Retention and Drainage Analyzer) Sheets (보류, 탈수, 지합을 종합적으로 고려한 Retention and Drainage Analyzer (RDA) 활용 보류향상제의 선정사례)

  • Jeon, Chang-Hoon;Ryu, Jeong-Yong;Song, Bong-Keun;Seo, Young-Bum;Chung, Sung-Hyun
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.42 no.3
    • /
    • pp.7-13
    • /
    • 2010
  • KOptimization and control of wet-end process provide a key solution to improve paper quality and production efficiency at the same time. Wet-end of paper machine is to determine three important influencing factors of papermaking i.e., retention, drainage and formation. Good formation of paper could be made at the cost of deteriorated retention or drainage. In the same manner increase of retention aid could cause the bad formation of paper. It is very important to find a proper retention chemical which may satisfy one of three factors without the sacrifice of other two. Laboratory scale analyzing or screening chemical additives of wet-end was reported in this study based on RDA sheet molding. Different from the conventional test method, simultaneous consideration of three important wet-end properties could be made by RDA and consequently more reliable prediction of actual paper machine wet-end could be expected.

Prediction of Ultra-High ON/OFF Ratio Nanoelectromechanical Switching from Covalently Bound $C_{60}$ Chains

  • Kim, Han Seul;Kim, Yong-Hoon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.645-645
    • /
    • 2013
  • Applying a first-principles computational approach combining density-functional theory and matrix Green's function calculations, we have studied the effects [2+2] cycloaddition olligormerization of fullerene $C_{60}$ chains on their junction charge transport properties. Analyzing first the microscopic mechanism of the switching realized in recent scanning tunneling microscope (STM) experiments, we found that, in agreement with experimental conclusions, the device characteristics are not significantly affected by the changes in electronic structure of $C_{60}$ chains. It is further predicted that the switching characteristics will sensitively depend on the STM tip metal species and the associated energy level bending direction in the $C_{60}-STM$ tip vacuum gap. Considering infinite $C_{60}$ chains, however, we confirm that unbound $C_{60}$ chains with strong orbital hybridizations and band formation should in principle induce a much higher conductance state. We demonstrate that a nanoelectromechanical approach in which the $C_{60}-STM$ tip distance is maintained at short distances can achieve a metal-independent and drastically improved switching performance based on the intrinsically better electronic connectivity in the bound $C_{60}$ chains.

  • PDF

The Analysis of Garlic Quality Based on Physical and Morphological Properties of a Whole Bulb of Garlic at the Harvesting Season - Discrimination Algorithms for Garlic Quality Grading - (수확기 통마늘의 물리적 및 형상적 특성에 기초한 마늘 품질 분석 - 마늘 등급판정을 위한 판별 알고리즘 -)

  • 박준걸;장영창;노광모;이충호
    • Journal of Biosystems Engineering
    • /
    • v.24 no.3
    • /
    • pp.225-234
    • /
    • 1999
  • This study was performed as a basic research for establishing an objective quality evaluation method on whole bulbs of garlic. The size of a whole bulb of garlic, the number and the uniformity of complete individual garlics, and the existence of bad individual garlics in the whole bulb of garlic were selected as quality grading factors. Quality discrimination algorithms with machine vision techniques were developed and verified for the four factors based on morphological and physical features of whole bulbs of garlic. Based on the results, the size discrimination by the projected area of a whole bulbs of garlic suggested four grading levels and the algorithm for predicting the number of complete individual garlics based on the peaks on its projected boundary showed ${\pm}$0.78 prediction error. In addition, the uniformity represented by coefficient of variation could be divided into four levels, but the algorithm for discriminating the existence of bad individual garlics in a whole bulb of garlic was not effective.

  • PDF

Fundamental Study on the Chemical Ignition Delay Time of Diesel Surrogate Components (모사 디젤 화학반응 메커니즘의 각 성분이 화학적 점화 지연 시간에 미치는 영향에 관한 기초 연구)

  • Kim, Gyujin;Lee, Sangyul;Min, Kyoungdoug
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.3
    • /
    • pp.74-81
    • /
    • 2013
  • Due to its accuracy and efficiency, reduced kinetic mechanism of diesel surrogate is widely used as fuel model when applying 3-D diesel engine simulation. But for the well-developed prediction of diesel surrogate reduced kinetic mechanism, it is important to know some meaningful factors which affect to ignition delay time. Meanwhile, ignition delay time consists of two parts. One is the chemical ignition delay time related with the chemical reaction, and the other is the physical ignition delay time which is affected by physical behavior of the fuel droplet. Especially for chemical ignition delay time, chemical properties of each fuel were studied for a long time, but researches on their mixtures have not been done widely. So it is necessary to understand the chemical characteristics of their mixtures for more precise and detailed modeling of surrogate diesel oil. And it shows same ignition trend of paraffin mixture with those of single component, and shorter ignition delay at low/high initial temperature when mixing paraffin and toluene.

Prediction of Non-linear Behavior of Flexible Matrix Composites (유연수지를 기지재료로 하는 복합재료의 비선형거동 예측)

  • 서영욱;우경식
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.10
    • /
    • pp.24-31
    • /
    • 2006
  • In this paper, mechanical behavior of unidirectional composites with flexible matrix was predicted by geometrical non-linear finite element analysis. Two typical idealized unit cells of square and hexagonal fiber arrays were modeled and these were subjected to different loadings. The stress-strain behavior of composites was predicted from which the effective properties were calculated. The hyperelasticity of polyurethane matrix was considered using Mooney-Rivlin model. In result, the stress-strain behavior of flexible composites shows non-linearity, especially it is remarkable under transverse normal and shear loading conditions. In this cases, there are great difference between square and hexagonal fiber array models.