• Title/Summary/Keyword: properties of modulus

Search Result 3,003, Processing Time 0.031 seconds

Modification of Water-borne Polyurethane Using Benzophenone Crosslinker (Benzophenone 가교제를 이용한 수분산 폴리우레탄 개질)

  • Kim, HyeokJin;Kim, Jin Chul;Chang, SangMok;Seo, BongKuk
    • Applied Chemistry for Engineering
    • /
    • v.27 no.2
    • /
    • pp.221-226
    • /
    • 2016
  • Production of eco-friendly and biologically harmless materials is strongly required in all industries. In particular, reducing volatile organic compounds in coating processes is extremely important to secure worker's safety. During recent two decades, extensive research works on water-borne polyurethane dispersion (PUD) have been continuously developed as an alternative to solvent-borne polyurethane. However, PUD was shown inferior mechanical properties to the organic solvent-borne polyurethane due to a limit to the molecular weight increase, which resulted in the limit of applications. To overcome this drawback, several approaches have been examined such as polymer blends and thermal/radiation induced crosslinking. Among these methods, the radiation curing system was suitable for industrialization because of the high crosslinking density and fast curing speed. In this study, we overcame the drawback for PUD via introducing benzophenone radiation curable units to PUD. We synthesized PUD films which possessed good dispersion in water for 30 days, increased Tg and Td more than $5^{\circ}C$ after UV curing film as well as improved young's modulus more than double.

Preparation of Liquid Crystal Emulsion for Transdermal Delivery of Glycyrrhizic Acid and Physical Characteristics and In Vitro Skin Permeation Studies (글리시리직애씨드의 경피 전달을 위한 액정 에멀젼의 제조와 물리적 특성 및 In Vitro 피부투과 연구)

  • Jung, Jin Woo;Yoo, Cha Young;Park, Soo Nam
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.41 no.4
    • /
    • pp.315-324
    • /
    • 2015
  • In this study, we prepared liquid crystal emulsion composed of amphiphilic substance $C_{14-22}$ alcohol, $C_{12-20}$ alkyl glucoside, behenyl alcohol and studied liquid crystal emulsion of properties and in vitro skin permeation. The results of formulation experiments, the clear liquid crystalline structure was observed in the ratio of $C_{14-22}$ alcohol 0.8%, $C_{12-20}$ alkyl glucoside 3.2%, behenyl alcohol 4% in the formulation. The results of physical property measurements, the viscosity of liquid crystal emulsion and O/W emulsion applied as a control group was respectively $1871.26{\sim}1.15Pa{\cdot}s$, $1768.69{\sim}1.14Pa{\cdot}s$ and the shear stress of O/W emulsion was 178.68 ~ 909.18 Pa, that of liquid crystal emulsion was 190.45 ~ 919.38 Pa. The storage modulus of O/W emulsion was 3428.53 ~ 9157.45 Pa, that of liquid crystal emulsion was 4487.82 ~ 8195.59 Pa. The tan (delta) value of O/W emulsion which means a ratio of viscosity to elasticity was 0.43 ~ 0.19, and that of liquid crystal emulsion was 0.23 ~ 0.25. The water content value on the skin for liquid crystal emulsion was significantly higher from 1 h to 6 h compared with that of O/W emulsion and the transepidermal water loss on the skin was significantly superior in skin moisture loss suppression from 30 min to 4 h compared with that of O/W emulsion. The results of skin permeation using glycyrrhizic acid, the result of skin permeation amount of liquid crystal emulsion for 24 h was $64.58{\mu}g/cm^2$, that of O/W emulsion was $37.07{\mu}g/cm^2$, that of butylene glycol solution was $41.05{\mu}g/cm^2$. Hourly permeability results, it is showed that skin penetration effect of the liquid crystal emulsion increases after 8 h. These results suggest that liquid crystal emulsions are effective for skin moisturizing effect and function as potential efficacy ingredient delivery system for the transdermal delivery.

Trend in Research and Application of Hard Carbon-based Thin Films (탄소계 경질 박막의 연구 및 산업 적용 동향)

  • Lee, Gyeong-Hwang;Park, Jong-Won;Yang, Ji-Hun;Jeong, Jae-In
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2009.05a
    • /
    • pp.111-112
    • /
    • 2009
  • Diamond-like carbon (DLC) is a convenient term to indicate the compositions of the various forms of amorphous carbon (a-C), tetrahedral amorphous carbon (ta-C), hydrogenated amorphous carbon and tetrahedral amorphous carbon (a-C:H and ta-C:H). The a-C film with disordered graphitic ordering, such as soot, chars, glassy carbon, and evaporated a-C, is shown in the lower left hand corner. If the fraction of sp3 bonding reaches a high degree, such an a-C is denoted as tetrahedral amorphous carbon (ta-C), in order to distinguish it from sp2 a-C [2]. Two hydrocarbon polymers, that is, polyethylene (CH2)n and polyacetylene (CH)n, define the limits of the triangle in the right hand corner beyond which interconnecting C-C networks do not form, and only strait-chain molecules are formed. The DLC films, i.e. a-C, ta-C, a-C:H and ta-C:H, have some extreme properties similar to diamond, such as hardness, elastic modulus and chemical inertness. These films are great advantages for many applications. One of the most important applications of the carbon-based films is the coating for magnetic hard disk recording. The second successful application is wear protective and antireflective films for IR windows. The third application is wear protection of bearings and sliding friction parts. The fourth is precision gages for the automotive industry. Recently, exciting ongoing study [1] tries to deposit a carbon-based protective film on engine parts (e.g. engine cylinders and pistons) taking into account not only low friction and wear, but also self lubricating properties. Reduction of the oil consumption is expected. Currently, for an additional application field, the carbon-based films are extensively studied as excellent candidates for biocompatible films on biomedical implants. The carbon-based films consist of carbon, hydrogen and nitrogen, which are biologically harmless as well as the main elements of human body. Some in vitro and limited in vivo studies on the biological effects of carbon-based films have been studied [$2{\sim}5$].The carbon-based films have great potentials in many fields. However, a few technological issues for carbon-based film are still needed to be studied to improve the applicability. Aisenberg and Chabot [3] firstly prepared an amorphous carbon film on substrates remained at room temperature using a beam of carbon ions produced using argon plasma. Spencer et al. [4] had subsequently developed this field. Many deposition techniques for DLC films have been developed to increase the fraction of sp3 bonding in the films. The a-C films have been prepared by a variety of deposition methods such as ion plating, DC or RF sputtering, RF or DC plasma enhanced chemical vapor deposition (PECVD), electron cyclotron resonance chemical vapor deposition (ECR-CVD), ion implantation, ablation, pulsed laser deposition and cathodic arc deposition, from a variety of carbon target or gaseous sources materials [5]. Sputtering is the most common deposition method for a-C film. Deposited films by these plasma methods, such as plasma enhanced chemical vapor deposition (PECVD) [6], are ranged into the interior of the triangle. Application fields of DLC films investigated from papers. Many papers purposed to apply for tribology due to the carbon-based films of low friction and wear resistance. Figure 1 shows the percentage of DLC research interest for application field. The biggest portion is tribology field. It is occupied 57%. Second, biomedical field hold 14%. Nowadays, biomedical field is took notice in many countries and significantly increased the research papers. DLC films actually applied to many industries in 2005 as shown figure 2. The most applied fields are mold and machinery industries. It took over 50%. The automobile industry is more and more increase application parts. In the near future, automobile industry is expected a big market for DLC coating. Figure 1 Research interests of carbon-based filmsFigure 2 Demand ratio of DLC coating for industry in 2005. In this presentation, I will introduce a trend of carbon-based coating research and applications.

  • PDF

A Study on Improving the Performance of Shale for Application of Aggregate for Concrete (콘크리트용 골재활용을 위한 셰일 골재의 성능개선에 관한 연구)

  • Lee, Seung-Han;Jung, Yong-Wook;Jang, Seok-Soo;Yeo, In-Dong;Choi, Jong-Oh
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.11
    • /
    • pp.5915-5922
    • /
    • 2013
  • In this study, with the aim of improving the performance of shale to allow for its use as coarse aggregate for concrete, we coated shale aggregates with water repellents and polymers and evaluated their physical properties such as density, water absorption rate, wear rate, and stability depending on the coating method. In addition, the effects of the performance improvement were evaluated by assessing the properties of fresh concrete produced by varying the shale substitution ratio, as well as the compressive strength, flexural strength, and freeze-thaw resistance according to curing ages. The test results revealed that the absolute dry densities of all coated aggregates satisfied the standard density for coarse aggregates for concrete(>$2.50g/cm^3$),and the absorption rate of the shale aggregate coated with water repellent decreased by about 50% compared with that of uncoated shale. The wear rate of the polymer-coated shale decreased by up to 13.0% compared with that of uncoated shale. All coated aggregates satisfied the stability standard for coarse aggregates for concrete(${\leq}12$). The water repellent-induced performance improvement decreased the shale aggregates' slump by about 20~30mm compared with that of the uncoated shale aggregates, and the air content of the repellent-coated shale aggregate increased by up to 0.9% compared with that of the uncoated shale aggregate. The compressive strength of the polymer-coated shale aggregates at a curing age of 28 days was RS(F) 95.7% and BS(F) 90.0%, and the flexural strength was RS(F) 98.0 % and BS(F) 92.0% of the corresponding values of concretes produced using plain aggregates. Furthermore, the concrete using polymer-coated shale aggregates showed a dynamic modulus of elasticity of RS(F) 91% and BS(F) 88% after 300 freeze-thaw cycles, thus demonstrating improved freeze-thaw durability.

Clinical significance of the mechanical properties of the abdominal aorta in Kawasaki disease (가와사끼병에서 복부 대동맥의 물리적 특성의 임상적 의의)

  • Kim, Mi Jin;Lee, Sang Yun;Kim, Yong Bum;Kil, Hong Ryang
    • Clinical and Experimental Pediatrics
    • /
    • v.51 no.9
    • /
    • pp.1012-1017
    • /
    • 2008
  • Purpose : This study aimed to assess the mechanical properties of the abdominal aorta in school-aged patients treated for Kawasaki disease and in normal, healthy children. Methods : This study examined 28 children with Kawasaki disease who had been followed up on and 30 healthy subjects of the same age and gender. We recorded systolic (Ps) and diastolic (Pd) blood pressure values and the aortic diameter at both minimum diastolic (Dd) and maximum systolic (Ds) expansion using two-dimensional echocardiography. These measurements were used to determine 1) aortic strain: S=(Ds-Dd)/Dd; 2) pressure strain elastic modulus: Ep=(Ps-Pd)/S; and 3) normalized Ep: $Ep^*=Ep/Pd$. Results : Ep (P=0.008) and $Ep^*$ (P=0.043) of the Kawasaki disease group were relatively high compared to those of the control group. Ep (P=0.002) and $Ep^*$ (P=0.015) of patients with coronary aneurysm were also relatively high compared with those of patients without coronary aneurysm, but lipid profiles did not differ, except for homocysteine (P=0.008). Therefore, in patients with coronary aneurysm, aortic stiffness was higher, compared to not only the control group but also patients without coronary aneurysm. However, in patients without coronary aneurysm, aortic stiffness was not significant, different compared to the control group. Conclusion : Measuring aortic distensibility may be helpful in assessing the risk of early atheroscletic change in the long-term management of Kawasaki disease.

Effects of Die Temperature and CO2 Gas Injection on Physical Properties of Extruded Brown Rice-Vegetable Mix (사출구 온도와 CO2 가스주입이 현미·야채류 압출성형물의 물리적 특성에 미치는 영향)

  • Gil, Sun-Kook;Ryu, Gi-Hyung
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.42 no.11
    • /
    • pp.1848-1856
    • /
    • 2013
  • This study is designed to examine the change in physical properties of extruded brown rice-vegetable mix at different temperatures and $CO_2$ gas injections. Moisture content and screw speed were fixed to 27% and 100 rpm respectively. Die temperatures and $CO_2$ gas injections were adjusted to 60, 80, $100^{\circ}C$ and 0, 150 mL/min, respectively. The ratio of ${\alpha}$-brown rice, brown rice and sugars (oligosaccharides and palatinose) was fixed to 25, 50 and 16%, respectively. Green tea, tomato and pumpkin powder were blended individually at 9%. Specific mechanical energy (SME) input decreased as die temperature for each vegetable addition increased. All extrudates decreased in density and breaking strength, but increased in specific length and water soluble index as $CO_2$ gas injection increased. Elastic modulus decreased as the die temperature and $CO_2$ gas injection increased. Extruded green tea mix with $CO_2$ gas injection at 150 mL/min was larger pore size and higher amount of pore than the tomato and pumpkin extrudates with $CO_2$ gas injection. Cold extrusion with $CO_2$ gas injection at $60^{\circ}C$ die temperature could be applicable for making Saengsik (uncooked food).

A Study on Physical and Mechanical Properties of Sawdustboards combined with Polypropylene Chip and Oriented Thread (폴리프로필렌사(絲)칩과 배향사(配向絲)를 결체(結締)한 톱밥보드의 물리적(物理的) 및 기계적(機械的) 성질(性質)에 관(關)한 연구(硏究))

  • Suh, Jin-Suk;Lee, Phil-Woo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.16 no.2
    • /
    • pp.1-41
    • /
    • 1988
  • For the purpose of utilizing the sawdust having poor combining properties as board raw material and resulting in dimensional instability of board, polypropylene chip (abbreviated below as PP chip) or oriented PP thread was combined with sawdust particle from white meranti(Shorea sp.). The PP chip was prepared from PP thread in length of 0.25, 0.5, 1.0 and 1.5 cm for conventional blending application. Thereafter, the PP chip cut as above was combined with the sawdust particle by 3, 6, 9, 12 and 15% on the weight basis of board. Oriented PP threads were aligned with spacing of 0.5, 1.0 and 1.5cm along transverse direction of board. The physical and mechanical properties on one, two and three layer boards manufactured with the above combining conditions were investigated. The conclusions obtained at this study were summarized as follows: 1. In thickness swelling, all one layer boards combined with PP chips showed lower values than control sawdustboard, and gradually clear decreasing tendendy with the increase of PP chip composition. Two layer board showed higher swelling value than one layer board, but the majority of boards lower values than control sawdustboard. All three layer boards showed lower swelling values than control sawdustboard. 2. In the PP chip and oriented thread combining board, the swelling values of boards combining 0.5cm spacing oriented thread with 1.0 or 1.5cm long PP chip in 12 and 15% by board weight were much lower than the lowest of one or three layer. 3. In specific gravity of 0.51, modulus of rupture of one layer board combined with 3% PP chip showed higher value than control sawdustboard. However, moduli of rupture of the boards with every PP chip composition did not exceed 80kgf/cm2, the low limit value of type 100 board, Korean Industrial Standard KS F 3104 Particleboards. Moduli of rupture of 6%, 1.5cm-long and 3% PP chip combined boards in specific gravity of 0.63 as well as PP chip combined board in specific gravity of 0.72 exceeded 80kgf/$cm^2$ on KS F 3104. Two layer boards combined with every PI' chip composition showed lower values than control sawdustboard and one layer board. Three layer boards combined with.1.5cm long PP chip in 3, 6 and 9% combination level showed higher values than control sawdustboard, and exceeded 80kgf/$cm^2$ on KS F 3104. 4. In modulus of rupture of PP thread oriented sawdustboard, 0.5cm spacing oriented board showed the highest value, and 1.0 and 1.5cm spacing oriented boards lower values than the 0.5cm. However, all PP thread oriented sawdustboards showed higher values than control saw-dustboard. 5. Moduli of rupture in the majority of PP chip and oriented thread combining boards were higher than 80kgf/$cm^2$ on KS F 3104. Moduli of rupture in the boards combining longer PP chip with narrower 0.5cm spacing oriented thread showed high values. In accordance with the spacing increase of oriented thread, moduli of rupture in the PP chip and oriented thread combining boards showed increasing tendency compared with oriented sawdustboard. 6. Moduli of elasticity in one, two and three layer boards were lower than those of control sawdustboard, however, moduli of elasticity of oriented sawdustboards with 0.5, 1.0 and 1.5cm spacing increased 20, 18 and 10% compared with control sawdustboard, respectively. 7. Moduli of elasticity in the majority of PP chip and oriented thread combining boards in 0.5, 1.0 and 1.5cm oriented spacing showed much higher values than control sawdustboard. On the whole, moduli of elasticity in the oriented boards combined with 9% or less combination level and 0.5cm or more length of PP chip showed higher values than oriented sawdustboard. The increasing effect on modulus of elasticity was shown by the PP chip composition in oriented board with narrow spacing. 8. Internal bond strengths of all one layer PP chip combined boards showed lower values than control sawdust board, however, the PP chip combined boards in specific gravity of 0.63 and 0.72 exceeded 1.5kgf/$cm^2$, the low limit value of type 100 board and 3kgf/$cm^2$, type 200 board on KS F 3104, respectively. And also most of all two, three layer-and oriented boards exceeded 3kgf/$cm^2$ on KS F. 9. In general, screw holding strength of one layer board combined with PP chip showed lower value than control sawdustboard, however, that of two or three layer board combined with PP chip did no decreased tendency, and even screw holding strength with the increase of PP chip composition. In the PP chip and oriented PP thread combining boards, most of the boards showed higher values than control sawdustboard in 9% or less PP chip composition.

  • PDF

Studies on the Physical Properties of Major Tree Barks Grown in Korea -Genus Pinus, Populus and Quercus- (한국산(韓國産) 주요(主要) 수종(樹種) 수피(樹皮)의 이학적(理學的) 성질(性質)에 관(關)한 연구(硏究) -소나무속(屬), 사시나무속(屬), 참나무속(屬)을 중심(中心)으로-)

  • Lee, Hwa Hyoung
    • Journal of Korean Society of Forest Science
    • /
    • v.33 no.1
    • /
    • pp.33-58
    • /
    • 1977
  • A bark comprises about 10 to 20 percents of a typical log by volume, and is generally considered as an unwanted residue rather than a potentially valuable resourses. As the world has been confronted with decreasing forest resources, natural resources pressure dictate that a bark should be a raw material instead of a waste. The utilization of the largely wasted bark of genus Pinus, Quercus, and Populus grown in Korea can be enhanced by learning its physical and mechanical properties. However, the study of tree bark grown in Korea have never been undertaken. In the present paper, an investigative study is carried out on the bark of three genus, eleven species representing not only the major bark trees but major species currently grown in Korea. For each species 20 trees were selected, at Suweon and Kwang-neung areas, on the same basis of the diameter class at the proper harvesting age. One $200cm^2$ segment of bark was obtained from each tree at brest height. Physical properties of bark studied are: bark density, moisture content of green bark (inner-, outer-, and total-bark), fiber saturation point, hysteresis loop, shrinkage, water absorption, specific heat, heat of wetting, thermal conductivity, thermal diffusivity, heat of combustion, and differential thermal analysis. The mechanical properties are studied on bending and compression strength (radial, longitudinal, and tangential). The results may be summarized as follows: 1. The oven-dry specific gravities differ between wood and bark, further more even for a given bark sample, the difference is obersved between inner and outer bark. 2. The oven-dry specific gravity of bark is higher than that of wood. This fact is attributed to the anatomical structure whose characters are manifested by higher content of sieve fiber and sclereids. 3. Except Pinus koraiensis, the oven-dry specific gravity of inner bark is higher than that of outer bark, which results from higher shrinkage of inner bark. 4. The moisture content of bark increases with direct proportion to the composition ratio of sieve components and decreases with higher percent of sclerenchyma and periderm tissues. 5. The possibility of determining fiber saturation point is suggested by the measuring the heat of wetting. With the proposed method, the fiber saturation point of Pinus densiflora lies between 26 and 28%, that of Quercus accutissima ranges from 24 to 28%. These results need be further examined by other methods. 6. Contrary to the behavior of wood, the bark shrinkage is the highest in radial direction and the lowest in longitudinal direction. Quercus serrata and Q. variabilis do not fall in this category. 7. Bark shows the same specific heat as wood, but the heat of wetting of bark is higher than that of wood. In heat conductivity, bark is lower than wood. From the measures of oven-dry specific gravity (${\rho}d$) and moisture fraction specific gravity (${\rho}m$) is devised the following regression equation upon which heat conductivity can be calculated. The calculated heat conductivity of bark is between $0.8{\times}10^{-4}$ and $1.6{\times}10^{-4}cal/cm-sec-deg$. $$K=4.631+11.408{\rho}d+7.628{\rho}m$$ 8. The bark heat diffusivity varies from $8.03{\times}10^{-4}$ to $4.46{\times}10^{-4}cm^2/sec$. From differential thermal analysis, wood shows a higher thermogram than bark under ignition point, but the tendency is reversed above ignition point. 9. The modulus of rupture for static bending strength of bark is proportional to the density of bark which in turn gives the following regression equation. M=243.78X-12.02 The compressive strength of bark is the highest in radial direction, contrary to the behavior of wood, and the compressive strength of longitudinal direction follows the tangential one in decreasing order.

  • PDF

An Experimental Study for Recycling of the Waste PET Bottle as a Fine Aggregate for Lightweight Concrete (폐 PET 병을 경량콘크리트용 잔골재로 재활용하기 위한 실험적 연구)

  • Choi Yun-Wang;Moon Dae-Joong;Jung Moon-Young;Cho Sun-Kyu
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.1 s.79
    • /
    • pp.79-87
    • /
    • 2004
  • The qualify of lightweight aggregate made from waste PET bottle(WPLA) and the workability, the unit weight and strength property of concrete with WPLA were investigated for the purpose of recycling the waste PET bottles as lightweight concrete fine aggregate. This study indicated a good result that WPLA should be replaced with less than $50\%$ of natural fine aggregate. When WPLA was replaced with $50\%$ of natural fine aggregate, the specific gravity and water absorption of mixed fine aggregate were greatly reduced about 23 and $75\%$ respectively in comparison with those of river sand. The quality of WPLA affected on the properties of lightweight aggregate concrete. The workability of fresh concrete with WPLA(WPLAC) was improved with increasing the replacement ratio of WPLA and water cement ratio. Slump increasing ratio of the former showed about $45 {\~} 120\%$ because that a specific gravity of fine aggregate was decreased from 2.6 to 1.7. The unit weight of concrete with $75\%$ WPLA was decreased about $17\%$ in comparison with that of control concrete. Furthermore, the compressive strength of concrete with 25 and $50 \%$ WPLA at the age of 28 days increased higher than 30 MPa regardless with water cement ratio (W/C=45, 49 and $53\%$) of this study. Specific strength of concrete with $25\%$ WPLA, $15.11{\times}10^3 MPa{\cdot}m^3/kg$, was higher than that of contro concrete in water cement ratio of $49\%$. The compressive strength-splitting tensile strength ratio and compressive strength-modulus of elasticity ratio of WPLAC were similar to that of nomal lightweight aggregate concrete. This results showed a good estimation that WPLA will be able to recycled as a fine aggregate for lightweight concrete.

Evaluation of Tensions and Prediction of Deformations for the Fabric Reinforeced -Earth Walls (섬유 보강토벽체의 인장력 평가 및 변형 예측)

  • Kim, Hong-Taek;Lee, Eun-Su;Song, Byeong-Ung
    • Geotechnical Engineering
    • /
    • v.12 no.4
    • /
    • pp.157-178
    • /
    • 1996
  • Current design methods for reinforced earth structures take no account of the magnitude of the strains induced in the tensile members as these are invariably manufactured from high modulus materials, such as steel, where straits are unlikely to be significant. With fabrics, however, large strains may frequently be induced and it is important to determine these to enable the stability of the structure to be assessed. In the present paper internal design method of analysis relating to the use of fabric reinforcements in reinforced earth structures for both stress and strain considerations is presented. For the internal stability analysis against rupture and pullout of the fabric reinforcements, a strain compatibility analysis procedure that considers the effects of reinforcement stiffness, relative movement between the soil and reinforcements, and compaction-induced stresses as studied by Ehrlich 8l Mitchell is used. I Bowever, the soil-reinforcement interaction is modeled by relating nonlinear elastic soil behavior to nonlinear response of the reinforcement. The soil constitutive model used is a modified vertsion of the hyperbolic soil model and compaction stress model proposed by Duncan et at., and iterative step-loading approach is used to take nonlinear soil behavior into consideration. The effects of seepage pressures are also dealt with in the proposed method of analy For purposes of assessing the strain behavior oi the fabric reinforcements, nonlinear model of hyperbolic form describing the load-extension relation of fabrics is employed. A procedure for specifying the strength characteristics of paraweb polyester fibre multicord, needle punched non-woven geotHxtile and knitted polyester geogrid is also described which may provide a more convenient procedure for incorporating the fablic properties into the prediction of fabric deformations. An attempt to define improvement in bond-linkage at the interconnecting nodes of the fabric reinforced earth stracture due to the confining stress is further made. The proposed method of analysis has been applied to estimate the maximum tensions, deformations and strains of the fabric reinforcements. The results are then compared with those of finite element analysis and experimental tests, and show in general good agreements indicating the effectiveness of the proposed method of analysis. Analytical parametric studies are also carried out to investigate the effects of relative soil-fabric reinforcement stiffness, locked-in stresses, compaction load and seepage pressures on the magnitude and variation of the fabric deformations.

  • PDF