• Title/Summary/Keyword: properties of modulus

Search Result 2,977, Processing Time 0.034 seconds

A Study on Physical and Mechanical Properties of Sawdustboards combined with Polypropylene Chip and Oriented Thread (폴리프로필렌사(絲)칩과 배향사(配向絲)를 결체(結締)한 톱밥보드의 물리적(物理的) 및 기계적(機械的) 성질(性質)에 관(關)한 연구(硏究))

  • Suh, Jin-Suk;Lee, Phil-Woo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.16 no.2
    • /
    • pp.1-41
    • /
    • 1988
  • For the purpose of utilizing the sawdust having poor combining properties as board raw material and resulting in dimensional instability of board, polypropylene chip (abbreviated below as PP chip) or oriented PP thread was combined with sawdust particle from white meranti(Shorea sp.). The PP chip was prepared from PP thread in length of 0.25, 0.5, 1.0 and 1.5 cm for conventional blending application. Thereafter, the PP chip cut as above was combined with the sawdust particle by 3, 6, 9, 12 and 15% on the weight basis of board. Oriented PP threads were aligned with spacing of 0.5, 1.0 and 1.5cm along transverse direction of board. The physical and mechanical properties on one, two and three layer boards manufactured with the above combining conditions were investigated. The conclusions obtained at this study were summarized as follows: 1. In thickness swelling, all one layer boards combined with PP chips showed lower values than control sawdustboard, and gradually clear decreasing tendendy with the increase of PP chip composition. Two layer board showed higher swelling value than one layer board, but the majority of boards lower values than control sawdustboard. All three layer boards showed lower swelling values than control sawdustboard. 2. In the PP chip and oriented thread combining board, the swelling values of boards combining 0.5cm spacing oriented thread with 1.0 or 1.5cm long PP chip in 12 and 15% by board weight were much lower than the lowest of one or three layer. 3. In specific gravity of 0.51, modulus of rupture of one layer board combined with 3% PP chip showed higher value than control sawdustboard. However, moduli of rupture of the boards with every PP chip composition did not exceed 80kgf/cm2, the low limit value of type 100 board, Korean Industrial Standard KS F 3104 Particleboards. Moduli of rupture of 6%, 1.5cm-long and 3% PP chip combined boards in specific gravity of 0.63 as well as PP chip combined board in specific gravity of 0.72 exceeded 80kgf/$cm^2$ on KS F 3104. Two layer boards combined with every PI' chip composition showed lower values than control sawdustboard and one layer board. Three layer boards combined with.1.5cm long PP chip in 3, 6 and 9% combination level showed higher values than control sawdustboard, and exceeded 80kgf/$cm^2$ on KS F 3104. 4. In modulus of rupture of PP thread oriented sawdustboard, 0.5cm spacing oriented board showed the highest value, and 1.0 and 1.5cm spacing oriented boards lower values than the 0.5cm. However, all PP thread oriented sawdustboards showed higher values than control saw-dustboard. 5. Moduli of rupture in the majority of PP chip and oriented thread combining boards were higher than 80kgf/$cm^2$ on KS F 3104. Moduli of rupture in the boards combining longer PP chip with narrower 0.5cm spacing oriented thread showed high values. In accordance with the spacing increase of oriented thread, moduli of rupture in the PP chip and oriented thread combining boards showed increasing tendency compared with oriented sawdustboard. 6. Moduli of elasticity in one, two and three layer boards were lower than those of control sawdustboard, however, moduli of elasticity of oriented sawdustboards with 0.5, 1.0 and 1.5cm spacing increased 20, 18 and 10% compared with control sawdustboard, respectively. 7. Moduli of elasticity in the majority of PP chip and oriented thread combining boards in 0.5, 1.0 and 1.5cm oriented spacing showed much higher values than control sawdustboard. On the whole, moduli of elasticity in the oriented boards combined with 9% or less combination level and 0.5cm or more length of PP chip showed higher values than oriented sawdustboard. The increasing effect on modulus of elasticity was shown by the PP chip composition in oriented board with narrow spacing. 8. Internal bond strengths of all one layer PP chip combined boards showed lower values than control sawdust board, however, the PP chip combined boards in specific gravity of 0.63 and 0.72 exceeded 1.5kgf/$cm^2$, the low limit value of type 100 board and 3kgf/$cm^2$, type 200 board on KS F 3104, respectively. And also most of all two, three layer-and oriented boards exceeded 3kgf/$cm^2$ on KS F. 9. In general, screw holding strength of one layer board combined with PP chip showed lower value than control sawdustboard, however, that of two or three layer board combined with PP chip did no decreased tendency, and even screw holding strength with the increase of PP chip composition. In the PP chip and oriented PP thread combining boards, most of the boards showed higher values than control sawdustboard in 9% or less PP chip composition.

  • PDF

Studies on the Physical Properties of Major Tree Barks Grown in Korea -Genus Pinus, Populus and Quercus- (한국산(韓國産) 주요(主要) 수종(樹種) 수피(樹皮)의 이학적(理學的) 성질(性質)에 관(關)한 연구(硏究) -소나무속(屬), 사시나무속(屬), 참나무속(屬)을 중심(中心)으로-)

  • Lee, Hwa Hyoung
    • Journal of Korean Society of Forest Science
    • /
    • v.33 no.1
    • /
    • pp.33-58
    • /
    • 1977
  • A bark comprises about 10 to 20 percents of a typical log by volume, and is generally considered as an unwanted residue rather than a potentially valuable resourses. As the world has been confronted with decreasing forest resources, natural resources pressure dictate that a bark should be a raw material instead of a waste. The utilization of the largely wasted bark of genus Pinus, Quercus, and Populus grown in Korea can be enhanced by learning its physical and mechanical properties. However, the study of tree bark grown in Korea have never been undertaken. In the present paper, an investigative study is carried out on the bark of three genus, eleven species representing not only the major bark trees but major species currently grown in Korea. For each species 20 trees were selected, at Suweon and Kwang-neung areas, on the same basis of the diameter class at the proper harvesting age. One $200cm^2$ segment of bark was obtained from each tree at brest height. Physical properties of bark studied are: bark density, moisture content of green bark (inner-, outer-, and total-bark), fiber saturation point, hysteresis loop, shrinkage, water absorption, specific heat, heat of wetting, thermal conductivity, thermal diffusivity, heat of combustion, and differential thermal analysis. The mechanical properties are studied on bending and compression strength (radial, longitudinal, and tangential). The results may be summarized as follows: 1. The oven-dry specific gravities differ between wood and bark, further more even for a given bark sample, the difference is obersved between inner and outer bark. 2. The oven-dry specific gravity of bark is higher than that of wood. This fact is attributed to the anatomical structure whose characters are manifested by higher content of sieve fiber and sclereids. 3. Except Pinus koraiensis, the oven-dry specific gravity of inner bark is higher than that of outer bark, which results from higher shrinkage of inner bark. 4. The moisture content of bark increases with direct proportion to the composition ratio of sieve components and decreases with higher percent of sclerenchyma and periderm tissues. 5. The possibility of determining fiber saturation point is suggested by the measuring the heat of wetting. With the proposed method, the fiber saturation point of Pinus densiflora lies between 26 and 28%, that of Quercus accutissima ranges from 24 to 28%. These results need be further examined by other methods. 6. Contrary to the behavior of wood, the bark shrinkage is the highest in radial direction and the lowest in longitudinal direction. Quercus serrata and Q. variabilis do not fall in this category. 7. Bark shows the same specific heat as wood, but the heat of wetting of bark is higher than that of wood. In heat conductivity, bark is lower than wood. From the measures of oven-dry specific gravity (${\rho}d$) and moisture fraction specific gravity (${\rho}m$) is devised the following regression equation upon which heat conductivity can be calculated. The calculated heat conductivity of bark is between $0.8{\times}10^{-4}$ and $1.6{\times}10^{-4}cal/cm-sec-deg$. $$K=4.631+11.408{\rho}d+7.628{\rho}m$$ 8. The bark heat diffusivity varies from $8.03{\times}10^{-4}$ to $4.46{\times}10^{-4}cm^2/sec$. From differential thermal analysis, wood shows a higher thermogram than bark under ignition point, but the tendency is reversed above ignition point. 9. The modulus of rupture for static bending strength of bark is proportional to the density of bark which in turn gives the following regression equation. M=243.78X-12.02 The compressive strength of bark is the highest in radial direction, contrary to the behavior of wood, and the compressive strength of longitudinal direction follows the tangential one in decreasing order.

  • PDF

An Experimental Study for Recycling of the Waste PET Bottle as a Fine Aggregate for Lightweight Concrete (폐 PET 병을 경량콘크리트용 잔골재로 재활용하기 위한 실험적 연구)

  • Choi Yun-Wang;Moon Dae-Joong;Jung Moon-Young;Cho Sun-Kyu
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.1 s.79
    • /
    • pp.79-87
    • /
    • 2004
  • The qualify of lightweight aggregate made from waste PET bottle(WPLA) and the workability, the unit weight and strength property of concrete with WPLA were investigated for the purpose of recycling the waste PET bottles as lightweight concrete fine aggregate. This study indicated a good result that WPLA should be replaced with less than $50\%$ of natural fine aggregate. When WPLA was replaced with $50\%$ of natural fine aggregate, the specific gravity and water absorption of mixed fine aggregate were greatly reduced about 23 and $75\%$ respectively in comparison with those of river sand. The quality of WPLA affected on the properties of lightweight aggregate concrete. The workability of fresh concrete with WPLA(WPLAC) was improved with increasing the replacement ratio of WPLA and water cement ratio. Slump increasing ratio of the former showed about $45 {\~} 120\%$ because that a specific gravity of fine aggregate was decreased from 2.6 to 1.7. The unit weight of concrete with $75\%$ WPLA was decreased about $17\%$ in comparison with that of control concrete. Furthermore, the compressive strength of concrete with 25 and $50 \%$ WPLA at the age of 28 days increased higher than 30 MPa regardless with water cement ratio (W/C=45, 49 and $53\%$) of this study. Specific strength of concrete with $25\%$ WPLA, $15.11{\times}10^3 MPa{\cdot}m^3/kg$, was higher than that of contro concrete in water cement ratio of $49\%$. The compressive strength-splitting tensile strength ratio and compressive strength-modulus of elasticity ratio of WPLAC were similar to that of nomal lightweight aggregate concrete. This results showed a good estimation that WPLA will be able to recycled as a fine aggregate for lightweight concrete.

Evaluation of Tensions and Prediction of Deformations for the Fabric Reinforeced -Earth Walls (섬유 보강토벽체의 인장력 평가 및 변형 예측)

  • Kim, Hong-Taek;Lee, Eun-Su;Song, Byeong-Ung
    • Geotechnical Engineering
    • /
    • v.12 no.4
    • /
    • pp.157-178
    • /
    • 1996
  • Current design methods for reinforced earth structures take no account of the magnitude of the strains induced in the tensile members as these are invariably manufactured from high modulus materials, such as steel, where straits are unlikely to be significant. With fabrics, however, large strains may frequently be induced and it is important to determine these to enable the stability of the structure to be assessed. In the present paper internal design method of analysis relating to the use of fabric reinforcements in reinforced earth structures for both stress and strain considerations is presented. For the internal stability analysis against rupture and pullout of the fabric reinforcements, a strain compatibility analysis procedure that considers the effects of reinforcement stiffness, relative movement between the soil and reinforcements, and compaction-induced stresses as studied by Ehrlich 8l Mitchell is used. I Bowever, the soil-reinforcement interaction is modeled by relating nonlinear elastic soil behavior to nonlinear response of the reinforcement. The soil constitutive model used is a modified vertsion of the hyperbolic soil model and compaction stress model proposed by Duncan et at., and iterative step-loading approach is used to take nonlinear soil behavior into consideration. The effects of seepage pressures are also dealt with in the proposed method of analy For purposes of assessing the strain behavior oi the fabric reinforcements, nonlinear model of hyperbolic form describing the load-extension relation of fabrics is employed. A procedure for specifying the strength characteristics of paraweb polyester fibre multicord, needle punched non-woven geotHxtile and knitted polyester geogrid is also described which may provide a more convenient procedure for incorporating the fablic properties into the prediction of fabric deformations. An attempt to define improvement in bond-linkage at the interconnecting nodes of the fabric reinforced earth stracture due to the confining stress is further made. The proposed method of analysis has been applied to estimate the maximum tensions, deformations and strains of the fabric reinforcements. The results are then compared with those of finite element analysis and experimental tests, and show in general good agreements indicating the effectiveness of the proposed method of analysis. Analytical parametric studies are also carried out to investigate the effects of relative soil-fabric reinforcement stiffness, locked-in stresses, compaction load and seepage pressures on the magnitude and variation of the fabric deformations.

  • PDF

Flexural Properties according to Change of Polymerization Temperature of Autopolymerized Resin for Orthodontic (치과 교정용 자가중합형 Resin의 중합 온도 변화에 따른 굽힘 특성)

  • Lee, Gyu Sun
    • Journal of dental hygiene science
    • /
    • v.15 no.3
    • /
    • pp.259-264
    • /
    • 2015
  • For this experiment, specimen was manufactured by injecting polymer and monomer into silicon mold with volume ratio of 2.5:1 based on ISO 20795-2 so that average thickness, width and length of specimen would be maintained as 3.3 mm, 10.0 mm and 65.0 mm, respectively depending on spray on technique. Specimen was divided into 3 groups ($25^{\circ}C$, $40^{\circ}C$, $70^{\circ}C$) depending on polymerization temperature and 10 specimen was manufactured for each group and it was polymerized in water tank of ${\pm}1^{\circ}C$ under the setting condition of polymerization time of 15 minutes and pressure of 3 bar. After keeping specimen in distilled water of $37^{\circ}C$ for over 48 hours before experiment, flexural strength (FS) and elasticity modulus (EM) of specimen being tested by using Intron (3344; Instron; Instron). SPSS ver. 16.0 was used for analysis and post-hoc test of Scheffe was performed after using one-way ANOVA. When comparing mean value of FS of resin for orthodontics, it was represented in the range of 71.500 MPa for $25^{\circ}C$ group, 74.920 MPa for $40^{\circ}C$ group and 76.880 MPa for $70^{\circ}C$ group and difference was shown in the order of $25^{\circ}C$ group <$40^{\circ}C$ group <$70^{\circ}C$ group but such difference was not significant statistically (p=0.052). Result of EM mean value of resin for orthodontics was more polymerization temperature was high, the more was significant difference represented in the order of $25^{\circ}C$ group <$40^{\circ}C$ group <$70^{\circ}C$ group (p<0.039).

Cyclic Behavior of Wall-Slab Joints with Lap Splices of Coldly Straightened Re-bars and with Mechanical Splices (굽힌 후 편 철근의 겹침 이음 및 기계적 이음을 갖는 벽-슬래브 접합부의 반복하중에 대한 거동)

  • Chun, Sung-Chul;Lee, Jin-Gon;Ha, Tae-Hun
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.3
    • /
    • pp.275-283
    • /
    • 2012
  • Steel Plate for Rebar Connection was recently developed to splice rebars in delayed slab-wall joints in high-rise building, slurry wall-slab joints, temporary openings, etc. It consists of several couplers and a thin steel plate with shear key. Cyclic loading tests on slab-wall joints were conducted to verify structural behavior of the joints having Steel Plate for Rebar Connection. For comparison, joints with Rebend Connection and without splices were also tested. The joints with Steel Plate for Rebar Connection showed typical flexural behavior in the sequence of tension re-bar yielding, sufficient flexural deformation, crushing of compression concrete, and compression rebar buckling. However, the joints with Rebend Connection had more bond cracks in slabs faces and spalling in side cover-concrete, even though elastic behavior of the joints was similar to that of the joints with Steel Plate for Re-bar Connection. Consequently, the joints with Rebend Connection had less strengths and deformation capacities than the joints with Steel Plate for Re-bar Connection. In addition, stiffness of the joints with Rebend Connection degraded more rapidly than the other joints as cyclic loads were applied. This may be caused by low elastic modulus of re-straightened rebars and restraightening of kinked bar. For two types of diameters (13mm and 16mm) and two types of grades (SD300 and SD400) of rebars, the joints with Steel Plate for Rebar Connection had higher strength than nominal strength calculated from actual material properties. On the contrary, strengths of the joints with Rebend Connection decreased as bar diameter increased and as grade becames higher. Therefore, Rebend Connection should be used with caution in design and construction.

Effects of Boliing, Steaming, and Chemical Treatment on Solid Wood Bending of Quercus acutissima Carr. and Pinus densiflora S. et. Z. (자비(煮沸), 증자(蒸煮) 및 약제처리(藥劑處理)가 상수리나무와 소나무의 휨가공성(加工性)에 미치는 영향(影響))

  • So, Won-Tek
    • Journal of the Korean Wood Science and Technology
    • /
    • v.13 no.1
    • /
    • pp.19-62
    • /
    • 1985
  • This study was performed to investigate: (i) the bending processing properties of silk worm oak (Quercus acutissima Carr.) and Korean red pine (Pinus densiflora S. et Z.) by boiling and steaming treatments; (ii) the effects of interrelated factors - sapwood and heartwood, annual ring placement, softening temperature and time, moisture content. and wood defects on bending processing properties; (iii) the changing rates of bending radii after release from a tension strap, and (iv) the improving methods of bending process by treatment with chemicals. The size of specimens tested was $15{\times}15{\times}350mm$ for boiling and steaming treatments and $5{\times}10{\times}200mm$ for treatments with chemicals. The specimens were green for boiling treatments and dried to 15 percent for steaming treatments. The specimens for treatments with chemicals were soaked in saturated urea solution, 35 percent formaldehyde solution, 25 percent polyethylene glycol -400 solution, and 25 percent ammonium hydroxide solution for 5 days and immediately followed the bending process, respectively. The results obtained were as follows: 1. The internal temperature of silk worm oak and Korean red pine by boiling and steaming time was raised slowly to $30^{\circ}C$ but rapidly from $30^{\circ}C$ to $80-90^{\circ}C$ and then slowly from $80-90^{\circ}C$ to $100^{\circ}C$. 2. The softening time required to the final temperature was directly proportional to the thickness of specimen. The time required from $25^{\circ}C$ to $100^{\circ}C$ for 15mm-squared specimen was 9.6-11.2 minutes in silk worm oak and 7.6-8.1 minutes in Korean red pine. 3. The moisture content (M.C.) of specimen by steaming time was increased rapidly first 4 minutes in the both species, and moderately from 4 to 20 minutes and then slowly and constantly in silk worm oak, and moderately from 4 to 15 minutes and then slowly and constantly in Korean red pine. The M.C. of 15mm-squared specimen in 50 minutes of steaming was increased to 18.0 percent in the oak and 22.4 percent in the pine from the initial conditioned M.C. of 15 percent The rate of moisture adsorption measured was therefore faster in the pine than in the oak. 4. The mechanical properties of the both species were decreased significantly with the increase of boiling rime. The decrement by the boiling treatment for 60 minutes was measured to 36.6-45.0 percent in compressive strength, 12.5-17.5 percent in tensile strength, 31.6-40.9 percent in modulus of rupture, and 23.3-34.6 percent in modulus of elasticity. 5. The minimum bending radius (M.B.R.) of sapwood and heartwood was 60-80 mm and 90 mm in silk worm oak, and 260 - 300 mm and 280 - 300 mm in Korean red pine, respectively. Therefore, the both species showed better bending processing properties in sapwood than in heartwood. 6. The M.B.R. of edge-grained and flat-grained specimen in suk worm oak was 60-80 mm, but the M.B.R. in Korean red pine was 240-280 mm and 260-360 mm, respectively. Comparing the M.B.R. of edge-grained with flat-grained specimen, in the pine the edge-grained showed better bending processing property than the flat-grained. 7. The bending processing properties of the both species were improved by the rising of softening temperature from $40^{\circ}C$ to $100^{\circ}C$. The minimum softening temperature for bending was $90^{\circ}C$ in silk worm oak and $80^{\circ}C$ in Korean red pine, and the dependency of softening temperature for bending was therefore higher in the oak than in the pine. 8. The bending processing properties of the both species were improved by the increase of softening time as well as temperature, but even after the internal temperature of specimen reaching to the final temperature, somewhat prolonged softening was required to obtain the best plastic conditions. The minimum softening time for bending of 15 mm-squared silk worm oak and Korean red pine specimen was 15 and 10 minutes in the boiling treatment, and 30 and 20 minutes in the steaming treatment, respectively. 9. The optimum M.C. for bending of silk worm oak was 20 percent, and the M.C. above fiber saturation point rather degraded the bending processing property, whereas the optimum M.C. of Korean red pine needed to be above 30 percent. 10. The bending works in the optimum conditions obtained as seen in Table 24 showed that the M.B.R. of silk worm oak and Korean red pine was 80 mm and 240 mm in the boiling treatment, and 50 mm and 280 mm in the steaming treatment, respectively. Therefore, the bending processing property of the oak was better in the steaming than in the boiling treatment, but that of the pine better in the boiling than in the steaming treatment. 11. In the bending without a tension strap, the radio r/t of the minimum bending radius t to the thickness t of silk worm oak and Korean red pine specimen amounted to 16.0 and 21.3 in the boiling treatment, and 17.3 and 24.0 in the steaming treatment, respectively. But in the bending with a tension strap, the r/t of the oak and the pine specimen decreased to 5.3 and 16.0 in t he boiling treatment, and 3.3 and 18.7 in the steaming treatment, respectively. Therefore, the bending processing properties of the both species were significantly improved by the strap. 12. The effect of pin knot on the degradation of bending processing property was very severe in silk worm oak by side, e.g. 90 percent of the oak specimens with pin knot on the concave side were ruptured when bent to a 100 mm radius but only 10 percent of the other specimens with pin knot on the convex side were ruptured. 13. The changing rate in the bending radius of specimen bent to a 300 mm radius after 30 days of exposure to room temperature conditions was measured to 4.0-10.3 percent in the boiling treatment and 13,0-15.0 percent in the steaming treatment. Therefore, the degree of spring back after release was higher in the steaming than in the boiling treatment. And the changing rate of moisture-proofing treated specimen by expoxy resin coating was only -1.0.0 percent. 14. Formaldehyde, 35 percent solution, and 25 percent polyethylene glycol-400 solution found no effect on the plasticization of the both species, but saturated urea solution and 25 percent ammonium hydroxide solution found significant effect in comparison to non-treated specimen. But the effect of the treatment with chemicals alone was inferior to that of the steaming treatment, and the steaming treatment after the treatment with chemicals improved 10-24 percent over the bending processing property of steam-bent specimen. 15. Three plasticity coefficients - load-strain coefficient, strain coefficient, and energy coefficient - were evaluated to be appropriate for the index of bending processing property because the coefficients had highly significant correlation with the bending radius. The fitness of the coefficients as the index was good at load-strain coefficient, energy coefficient, and strain coefficient, in order.

  • PDF