• Title/Summary/Keyword: properties of enzyme

Search Result 1,502, Processing Time 0.025 seconds

Effects of Xylanase on the Baking Properties of Sorghum (Xylanase 첨가에 따른 수수의 제빵 적성 변화)

  • Ahn, Ji Eun;Go, Ji Yeon;Koh, Bong Kyung
    • Korean journal of food and cookery science
    • /
    • v.31 no.1
    • /
    • pp.18-25
    • /
    • 2015
  • This study investigated the baking properties of sorghum with the addition of xylanase or Pentopan, which is a baking additive containing xylanase. The control bread was made with a 30% substitution for wheat flour and the optimum level of enzyme addition was 0.75 mg/g flour for Pentopan and 5 mg/g flour for xylanase. The water binding capacity of wheat flour increased with the addition of sorghum, but decreased with the addition of either xylanase or Pentopan. The resistance of dough increased while extensibility decreased with the addition of sorghum; however, resistance decreased while extensibility increased with the addition of the enzyme. Specific volume of bread decreased significantly with the addition of sorghum. However, the specific volume was significantly recovered with the addition of enzyme. Crumb firmness was higher in the sorghum-added sample, but crumb firmness of the bread decreased with the addition of the enzyme. The crumb firmness of bread with added xylanase decreased significantly in 24 hours. These results demonstrated that adding sorghum with either xylanase or Pentopan that included xylanase increased specific volume and decreased crumb firmness whereas sorghum decreased the quality of fermented bread when added to wheat flour. The firmness rate of fermented bread particularly decreased with the addition of pure xylanase.

Impact of transgenic AFPCHI (Cucumis melo L. Silver Light) fungal resistance melon on soil microbial communities and enzyme activities

  • Bezirganoglu, Ismail;Uysal, Pinar
    • Journal of Plant Biotechnology
    • /
    • v.44 no.2
    • /
    • pp.156-163
    • /
    • 2017
  • A greenhouse experiment was conducted for evaluation of ecological effects of transgenic melon plants in the rhizospheric soil in terms of soil properties, enzyme activities and microbial communities. Organic matter content of soil under transgenic melon plants was significantly higher than that of soil with non-transgenic melon plants. Significant variations were observed in organic matter, total P and K in soil cultivation with transgenic melon plants. There were also significant variations in the total numbers of colony forming units of fungi, actinomycetes and bacteria between soils treated with transgenic and non-transgenic melon plants. Transgenic and non-transgenic melon significantly enhanced several enzymes activities including urease, acid phosphatase, alkalin phosphatase, arysulphtase, ${\beta}$ glucosidase, dehydrogenase, protease and catalase. Soil polyphenoloxidase activity of $T_1$ transgenic melon was lower than that of $T_0$ transgenic melon and a non-melon plant during the same period. The first generation transgenic melon plants ($T_0$) showed significantly greater (p<0.05) effect on the activitiy of arylsulfatase, which increased from $2.540{\times}10^6CFU\;g^{-1}$ (control) to $19.860{\times}10^6CFU\;g^{-1}$ ($T_0$). These results clearly indicated that transgenic melon might change microbial communities, enzyme activities and soil chemical properties.

Isolation of Alkalopsychrotrophic Protease-Producing Pseudomonas sp. RP-222 and Properties of Its Crude Enzyme (저온.알칼리성 Protease를 생산하는 Pseudomonas sp. RP-222의 분리 및 조효소의 특성)

  • 노종수;정영철;성낙계;박석규
    • Microbiology and Biotechnology Letters
    • /
    • v.19 no.4
    • /
    • pp.383-389
    • /
    • 1991
  • In order to produce alkaline protease, psychrotrophic bacterium which have high enzyme activity at low temperature, was isolated by using enrichment culture from various samples and identified as genus alkalopsychrotropic Pseudomonas sp. RP-222. The optimal culture conditions for enzyme production were pH- 10.0, temperature-$20^{\circ}C$ and culture time-4 days. The optimum pH and temperature for the enzyme activity were pH 10.5 and $40^{\circ}C$, respectively and the enzyme was relatively stable at pH 7.0~13.0 and below $50^{\circ}C$. The enzyme was inhibited by ethylenediaminetetraacetate and phenylmethylsulfonylfluoride, indicating that the enzyme was a serine metalloenzyme, but considerably stable in the presence of surface active agents. Activity of the enzyme was increased by the addition of 0.05% Na-$\alpha$-olefin sulfonate.

  • PDF

Characterization of Mitochondrial NADH Dehydrogenase in Lentinus edodes (표고버섯의 미토콘드리아성 NADH 탈수소효소의 특성)

  • Kim, Eun-Mi;Min, Ji-Young;Min, Tae-Jin
    • The Korean Journal of Mycology
    • /
    • v.26 no.1 s.84
    • /
    • pp.119-126
    • /
    • 1998
  • Mitochondria were isolated from Lentinus edodes and properties of the mitochondrial NADH dehydrogenase were studied. Optimal pH, temperature, and thermal stability of the enzyme were estimated to be 7.6, $33^{\circ}C$, and stable for one hour at $50^{\circ}C$. The apparent $K_m$ for the NADH was 0.33 mM. This enzyme catalyzed to transfer electrons from NADH to ferricyanide, decylubiquinone, and 2,6-dichloro-phenol-indophenol. 0.5 mM antimycin A and 0.01 mM dibromothymoquinone strongly inhibited 87.8% and 76.5% of the enzyme activities. 0.01 mM oligomycin known as an inhibitor of ATPase also strongly inhibited 79.2% of activities. 0.5 mM 5,5'-dithiobis-(2-nitrobenzoic acid) and 1.0 mM N-ethylmaleimide known as a modifier of SH group inhibited 50.4% and 36.7% of activities. 1 mM ethyl 2,4-dihydroxy-6-methyl benzoate and 10 mM orcinol, which had been known as an antibiotics isolated from Umbilicaria vellea according to our previous work, stimulated 68.4% and 48.1% of the enzyme activities.

  • PDF

Purification and Properties of $\gamma$-Glutamyl Transpeptidase from Bacillus sp. KUN-17

  • Hwang, Se-Young;Ryang, Jun-Hwan;Lim, Wang-Jin;Yoo, Ick-Dong;Kunio Oishi
    • Journal of Microbiology and Biotechnology
    • /
    • v.6 no.4
    • /
    • pp.238-244
    • /
    • 1996
  • $\gamma$-Glutamyl transpeptidase ($\gamma$-GTP; EC 2.3.2.2) present in the culture filtrate of Bacillus sp. KUN-17 was purified 400-fold through a consecutive procedure including organic precipitation and column chromatography. The enzyme has an estimated molecular weight of 70, 000 and consists of hetero-subunits with molecular weights of 42, 000 and 22, 000. In vitro optimal conditions for those transfer and hydrolysis reactions appeared to be pH 7.0 at $50^{\circ}C$ and pH 8.4 at $40^{\circ}C$, respectively. The denatured enzyme recovered most of its $\gamma$-GTP activity by removing detergents such as sodium dodecyl sulfate (SDS) or urea with dialysis. The enzyme showed higher affinities against a number of amino acids as $\gamma$-glutamyl acceptors than glycylglycine in the following order: L-valine, L-methionine, L-glutamic acid or L-as-paragine, L-alanine. Also, it was shown that L-glutamine was the most suitable $\gamma$-glutamyl donor for the transfer reaction among those tested. Amino acids generally inhibited the enzyme activity for the transfer reaction, but not for the hydrolysis reaction.

  • PDF

Effect of Chinese Chives Addition on Retrogradation Rate and Storage Stability of Frozen Noodle (부추 첨가가 냉동면의 노화 및 저장 안정성에 미치는 효과)

  • Kwak, Yeon-Ju
    • The Korean Journal of Food And Nutrition
    • /
    • v.21 no.4
    • /
    • pp.510-517
    • /
    • 2008
  • Effects of addition of Chinese chives into frozen noodle on retrogradation of the cooked frozen noodle were examined by enzymatic evaluation during the storage 3 days at $4^{\circ}C$. The retrogradation rate during storage was significantly reduced by addition Chinese chives. Thus we hypothesized that retarogardation and textural changes of frozen noodle might be linked to thermostable amylase in Chinese chives. The amylase isolated from Chinese chives was affected by temperature and pH of buffer used. The enzyme was mainly extracted 20 mM potassium phosphate buffer(pH 7.0). The enzyme was extremly stable at wide temerature and pH. Amylase activity was maximal at $50^{\circ}C$ and pH 7.5. The enzyme was not inactivated by heat treatment at $70^{\circ}C$, $80^{\circ}C$ for 30 min. We suggest the enzyme was stable at high temperature. To investigate the effect of different storage packge on texture properties, color, sensory evaluation, parent-packged and unparent packaged frozen noodle was compared with control. As the storage passed, the frozen noodle packaged with parent showed a rapid decrease in the color. The hardness was gradually decreased during storage. It was found that unparent packged must be nessasry in the Chinese chives frozen noodle. In changes of sensory properties by traind panel, Chinese chives frozen noodle with 2% blanched Chinese chives got the highest score in overall acceptability, therefore we tried acceptance test by consumers with 2% blanched frozen Chinese chives noodle.

Catalytic and Structural Properties of Pyridoxal Kinase

  • Cho, Jung-Jong;Kim, Se-Kwon;Kim, Young-Tae
    • BMB Reports
    • /
    • v.30 no.2
    • /
    • pp.125-131
    • /
    • 1997
  • This work reports studies of the catalytic and structural properties of pyridoxal kinase (ATP: pyridoxal 5' -phosphotransferase, EC. 2.7.1.35), Pyridoxal kinase catalyzes the phosphorylation of vitamin $B_6$ (pyridoxal, pyridoxamine, pyridoxine) using ATP-Zn as a phosphoryl donor. The enzyme purified from brain tissues is made up of two identical subunits of 40 kDa each. Native enzyme was inhibited by a substrate analogue, pyridoxal-oxime. Limited chymotrypsin digestion of pyridoxal kinase yields two fragments of 24 and 16 kDa with concomitant loss of catalytic activity. These fragments were isolated by DEAE ion exchange chromatography and used for binding studies with fluorescent ATP and pyridoxal analogues. The spectroscopic properties of both fluorescent pyridoxal analogue and Anthraniloyl ATP (Ant-ATP) bound to the 24 kDa fragment are indistinguishable from those of both pyridoxal analogue and Ant-ATP bound to the native pyridoxal kinase, respectively. The small 16 kDa fragment, generated by proteolytic cleavage of the kinase, does not bind any of the substrate analogues. Binding characteristics of Ant-ATP were extensively studied by measuring the changes in fluorescence spectra at various conditions. From the results presented herein, it is postulated that the structural domain associated with catalytic activity comprises approximately one-half of the molecular mass of pyridoxal kinase (24 kDa). whereas the remaining portion (16 kDa) of the enzyme contains a regulatory binding domain.

  • PDF

Physicochemical Properties of Corn Starch-derived Branched Dextrin Produced by a Branching Enzyme

  • Song, Eun-Bum;Min, Byoung-Cheol;Hwang, Eun-Sun;Lee, Hyong-Joo
    • Food Science and Biotechnology
    • /
    • v.17 no.2
    • /
    • pp.234-240
    • /
    • 2008
  • The optimal conditions for the production of branched dextrin from com starch (CSBD) using branching enzyme (BE) were established by investigating the degree of retrogradation of the gelatinized starch. The physicochemical properties of CSBD prepared using the established process were evaluated. It was found that physicochemical properties of com starch were greatly modified by BE treatment. CSBD had a higher dextrose-equivalent value and water solubility than the corresponding control. On the other hand, the viscosities in gelatinized solution and amylose contents of CSBD were lower than those of the control. A high-performance size-exclusion chromatography/multiangle laser light scattering/retractive index (HPSEC/MALLS/RI) system showed that the average molecular weight of CSBD was lower than that of the control. The pasting viscosities of CSBD were stable during the entire temperature cycle. In general, the BE treatment resulted in the retrogradation during storage being lower for CSBD than for the control.

Physicochemical Properties of Enzymatically Modified Maize Starch Using 4-${\alpha}$-Glucanotransferase

  • Park, Jin-Hee;Park, Kwan-Hwa;Jane, Jay-Iin
    • Food Science and Biotechnology
    • /
    • v.16 no.6
    • /
    • pp.902-909
    • /
    • 2007
  • Granular maize starch was treated with Thermus scotoductus 4-${\alpha}$-glucanotransferase (${\alpha}$-GTase), and its physicochemical properties were determined. The gelatinization and pasting temperatures of ${\alpha}$-GTase-modified starch were decreased by higher enzyme concentrations. ${\alpha}$-GTase treatment lowered the peak, setback, and [mal viscosity of the starch. At a higher level of enzyme treatment, the melting peak of the amylose-lipid complex was undetectable on the DSC thermogram. Also, ${\alpha}$-GTase-modified starch showed a slower retrogradation rate. The enzyme treatment changed the dynamic rheological properties of the starch, leading to decreases in its elastic (G') and viscous (G") moduli. ${\alpha}$-GTase-modified starch showed more liquid-like characteristics, whereas normal maize starch was more elastic and solid-like. Gel permeation chromatography of modified starch showed that amylose was degraded, and a low molecular-weight fraction with $M_w$ of $1.1{\times}10^5$ was produced. Branch chain-length (BCL) distribution of modified starch showed increases in BCL (DP>20), which could result from the glucans degraded from amylose molecules transferred to the branch chains of amylopectin by inter-/intra-molecular transglycosylation of ${\alpha}$-GTase. These new physicochemical functionalities of the modified starch produced by ${\alpha}$-GTase treatment are applicable to starch-based products in various industries.

Research Progress on Strategies for Improving the Enzyme Properties of Bacteriophage Endolysins

  • Yulu Wang;Xue Wang;Xin Liu;Bokun Lin
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.6
    • /
    • pp.1189-1196
    • /
    • 2024
  • Bacterial resistance to commonly used antibiotics is one of the major challenges to be solved today. Bacteriophage endolysins (Lysins) have become a hot research topic as a new class of antibacterial agents. They have promising applications in bacterial infection prevention and control in multiple fields, such as livestock and poultry farming, food safety, clinical medicine and pathogen detection. However, many phage endolysins display low bactericidal activities, short half-life and narrow lytic spectrums. Therefore, some methods have been used to improve the enzyme properties (bactericidal activity, lysis spectrum, stability and targeting the substrate, etc) of bacteriophage endolysins, including deletion or addition of domains, DNA mutagenesis, chimerization of domains, fusion to the membrane-penetrating peptides, fusion with domains targeting outer membrane transport systems, encapsulation, the usage of outer membrane permeabilizers. In this review, research progress on the strategies for improving their enzyme properties are systematically presented, with a view to provide references for the development of lysins with excellent performances.