• Title/Summary/Keyword: propellant tank

Search Result 124, Processing Time 0.032 seconds

The Concept Design of Joint Part Between Propellant Tank and Feeding Line for Launch Vehicle (발사체 추진제 탱크와 배관 연결부 개념설계)

  • Jung, Dong-Ho;Cho, Kie-Joo;Oh, Seung-Hyub
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.801-804
    • /
    • 2011
  • The concept design of joint part between propellant tank and feeding line for launch vehicle has been performed with the case study of oversea launch vehicles. we carried out, for the several configurations, numerical flow analyses to find the joint configuration which promises high flow uniformity at the outlet. There were a little difference in the numerical results, because the length of feeding lines are sufficiently long to stabilize the flow field.

  • PDF

Investigation on Temperature Drop during Pressurant Discharging from Pressurant Tank of Liquid Rocket Propulsion System (I) (액체로켓추진시스템의 가압제 탱크에서 가압제 토출시 온도강하율에 대한 연구 (I))

  • Chung, Yong-Gahp;Kwon, Oh-Sung;Cho, Nam-Kyung;Han, Sang-Yeop;Cho, In-Hyun
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.11 no.2
    • /
    • pp.54-61
    • /
    • 2007
  • Propellant pressurization system in liquid rocket propulsion system plays a role supplying pressurant gas at a controlled pressure into the ullage space of propellant tanks. The most important design parameter for such propellant pressurization system is the temperature of pressurant gas fed from pressurant tank. Such pressurant is gaseous state, of which density is very sensitive to the temperature of pressurant. Generally for the propulsion system, which requires high thrust and is consisted of cryogenic propellant the pressurant is stored at high density and high pressure to reduce the weight of pressurant tanks, which are placed inside of cryogenic propellant tank. That is called cryogenic storage pressurization system. This study investigates the temperature variation of pressurant at the time when the pressurant is coming out of pressurant tank experimentally as well as numerically. Fluids used in this study are air and liquid oxygen as outer fluid and gaseous nitrogen and gaseous helium as pressurant respectively.

Optimum Configuration for Pressurization System of Propellant Tank (추진제 탱크 가압 시스템의 최적 구성)

  • Jung, Young-Suk;Cho, Nam-Kyung;Oh, Seung-Hyub
    • Aerospace Engineering and Technology
    • /
    • v.9 no.1
    • /
    • pp.133-142
    • /
    • 2010
  • Propulsion system of launch vehicle is composed with subsystems as propellant tank, pressurization system, propellant fill/drain system, valve operating system, purge system and so on. Among others, pressurization system is the most important subsystem, because of the real-time control part for pressure control of propellant tank. Therefore, it is the subsystem that must be primarily considered on conceptual design process. In this paper, the data of the previously developed pressurization systems were collected and the optimum configuration was selected by analysis of advantage and disadvantage of the systems.

Evaluation of Permeability Performance by Cryogenic Thermal Shock in Composite Propellant Tank for Space Launch Vehicles (우주 발사체용 복합재 산화제 탱크 구조물의 극저온 열충격에 따른 투과도 성능 평가)

  • Kim, Jung-Myung;Hong, Seung-Chul;Choi, Soo-Young;Jeong, Sang-Won;Ahn, Hyon-Su
    • Composites Research
    • /
    • v.33 no.5
    • /
    • pp.309-314
    • /
    • 2020
  • Polymer composites were used to reduce the weight of the spacecraft's cryogenic propellant tank. Since these materials were directional, the permeability performance of the gas permeated or delivered in the stacking direction was an indicator directly related to performance such as tank stability and onboard fuel quantity estimation. In addition, the results of permeation measurements and optical analysis of the surface to verify the effect of the number of cycles exposed to the cryogenic-room temperature environment are included. As a result, the permeability was inversely proportional to the thickness and was proportional to the number of thermal shocks, and it was verified that the permeability performance was suitable for the cryogenic propellant tank material for the space launch vehicle.

The Interior ballistic Properties of non-solvent double based gun propellants (무용제 복기 화포 추진제의 강내탄도 특성)

  • 이정환;권순길;황준식;이해석;김구일;최병오
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.47-50
    • /
    • 2003
  • JA2 Propellants, made by non-solvent process, are of great interest for the tank gun propellant. This is due to high energy. The grain geometries of JA2 and modified JA2 propellant were designed for application to 105mm APFSDS projectile. The combustion, thermochemical, and interior ballistic properties of the propellant were tested and calculated. The performances of the propellant were evaluated out using 105mm slug T2 projectiles and 105mm tank gun. The muzzle velocity of the propellants was higher than that of the KM30 for K274 projectile.

  • PDF

Investigation on Temperature Drop during Pressurant Discharging from Pressurant Tank of Liquid Rocket Propulsion System (II) (액체로켓추진시스템의 가압제 탱크에서 가압제 토출시 온도강하율에 대한 연구(II))

  • Chung, Yong-Gahp;Kim, Yong-Wook;Kim, Yoo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.3
    • /
    • pp.279-284
    • /
    • 2008
  • Propellant pressurization system in liquid rocket propulsion system plays a role in supplying pressurant gas at a controlled pressure into the ullage space of propellant tanks. The most important design parameter for such propellant pressurization system is the temperature of pressurant gas fed from pressurant tank, which is placed inside of cryogenic propellant tank. Such pressurant is gaseous state, of which density is very sensitive to the temperature of pressurant. Previous investigation dealt with thermal correlation of pressurant and external fluid at room temperature. This study investigates the temperature variation of cryogenic pressurant (GHe) at the time when the pressurant is coming out of pressurant tank, which is submerged in a liquid oxygen, experimentally as well as numerically.

Investigation on Temperature Drop during Pressurant Discharging from Pressurant Tank of Liquid Rocket Propulsion System (II) (액체로켓추진시스템의 가압제 탱크에서 가압제 토출 시 온도강하율에 대한 연구 (II))

  • Chung, Yong-Gahp;Kwon, Oh-Sung;Cho, Nam-Kyung;Han, Sang-Yeop;Cho, In-Hyun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.04a
    • /
    • pp.58-64
    • /
    • 2007
  • Propellant pressurization system in liquid rocket propulsion system plays a role supplying pressurant gas at a controlled pressure into the ullage space of propellant tanks. The most important design parameter for such propellant pressurization system is the temperature of pressurant gas fed from pressurant tank, which is placed inside of cryogenic propellant tank. Such pressurant is gaseous state, of which density is very sensitive to the temperature of pressurant. Previous investigation dealt with thermal correlation of pressurant and external fluid at room temperature. This study investigates the temperature variation of cryogenic pressurant (GHe) at the time when the pressurant is coming out of pressurant tank, which is submerged in a liquid oxygen, experimentally as well as numerically.

  • PDF

Design and Development of Vent Relief Valve for Oxidizer Tank (산화제 탱크용 벤트릴리프밸브 설계 및 개발)

  • Koh, Hyeon-Seok;Han, Sang-Yeop
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.854-856
    • /
    • 2011
  • A vent relief valve for oxidizer tank has been designed for liquid propellant feeding system of the space launch vehicle. The vent relief valve ensures oxidizer tank ventilation during filling and its protection from overpressure after filling. Tank ventilation during filling is ensured by vent valve and tank protection is ensured by combined operation of relief valve and vent valve. Numerical analysis predicted that pneumatic behavior and dynamic characteristics met the valve requirements. After manufacturing the prototype model, we have been conducting the tests to evaluate the performance of the vent relief valve.

  • PDF

A Consideration of Analytical Thermodynamic Modeling of Bipropellant Propulsion System

  • Chae, Jong-Won
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.243-246
    • /
    • 2008
  • This paper is to consider analytical thermodynamic modeling of bipropellant propulsion system. The objective of thermodynamic modeling is to predict thermodynamic conditions such as pressures, temperatures and densities in the pressurant tank and the propellant tank in which heat and mass transfer occur. In this paper also it shows analytic equations that calculate the evolution of ullage volume and interface areas. Since the ullage interface areas are time-varying,(the liquid propellant volume decreases as the rocket engine is firing; the change of ullage volume correspond to the change of liquid propellant volume) for a numerical convenience non-dimensionalized correlations are commonly used in most literatures with limitations; a few percentages of inherent error. The analytic equations are derived from analytic geometry, subsequently without inherent error. Those equations are important to calculate the heat transfer areas in the heat transfer equations. It presents the comparison result of both analytic equations and correlation method.

  • PDF

Test Evaluation of a Linerless Composite Propellant Tank Using the Composite Collapsible Mandrel (복합재 분리형 맨드릴을 이용한 라이너 없는 복합재 추진제 탱크에 대한 시험 평가)

  • Seung Yun Rhee;Kwangsoo Kim;Young-Ha Yoon;Moo-Keun Yi;Hee Chul Kim
    • Composites Research
    • /
    • v.36 no.2
    • /
    • pp.132-139
    • /
    • 2023
  • A linerless composite propellant tank was designed and manufactured by using the carbon fiber-reinforced composite materials which have superior strength-to-weight ratio in order to reduce weight of the tank. In this research, we designed a sub-scale composite propellant tank with a diameter of 800 mm to withstand an MEOP of 1.7 MPa. We manufactured the boss of the tank by using the same composite materials to reduce the thermal expansion difference between the boss and the secondary-bonded composite layers of the barrel in the cryogenic environment. We used the collapsible mandrel to manufacture the tank without any liner. The mandrel was made from epoxy-based composite tooling prepregs to reduce weight of the mandrel. We manufactured the test tanks by laying up the carbon fiber fabric prepregs manually on the mandrel and then applying the autoclave cure process. We performed a proof test, a helium tightness test, a repeated pressurization test, and a burst test in room temperature. The test results demonstrate that the proposed design and manufacture process satisfies all strength requirements as well as an anti-leakage requirement.