• Title/Summary/Keyword: propane engine

Search Result 56, Processing Time 0.021 seconds

Prediction Modeling of Unburned Hydrocarbon Oxidation in the Exhaust Port of a Propane-Fueled SI Engine (프로판 엔진의 배기 포트에서 탄화수소 산화 예측을 위한 모델링)

  • 이형승;박종범;최회명;민경덕;김응서
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.2
    • /
    • pp.33-40
    • /
    • 2000
  • In order to investigate the exhaust structure and secondary oxidation of unburned hydrocarbon (HC) in the exhaust port, a numerical simulation was performed with 3-dimensional flow model and oxidation mechanism optimized for port oxidation. To predict the exhaust and oxidation process with consideration of flow, mixing, and temperature, 3-dimensional flow model and HC oxidation model were used with a commercial computational program, STAR-CD. The flow model were with moving grid for valve motion, which could predict the change of flow field with respect to valve lift. Optimization was performed to predict the HC oxidation with temperature range of 1200~1500K, low HC and oxygen concentration, existence of intermediate species, as typical in port oxidation. The constructed model could predict the port oxidation process with oxidation degree of 14~48% according to the engine operation conditions.

  • PDF

An experimental study on the mechanism of hydrocarbon emissions (배기 Hydrocarbon의 생성과정에 과한 실험적 연구)

  • 심현성;박찬준;이대운
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.13 no.3
    • /
    • pp.25-31
    • /
    • 1991
  • The formation process of hydrocarbon emissions was investigated in SI engine. The time- resolved concentrations of hydrocarbon emissions were measured using a high gas sampling valve and a gas chromatography. The gas was sampled at exhaust port, or the position of spark plug, or the wall of combustion chamber. The experiments were conducted using the Alpha engine of Hyundai Motor Company. The fuel used was methanol or propane. It was found that the effect of the quenching layer of combustion chamber wall on hydrocarbon emissions was not significant. The increasing rate of hydrocarbon concentration at combustion chamber wall near crevice and oil layer after flame was reached was much higher than that at the position of spark plug. The hydrocarbon concentrations at exhaust port had two peak values just after opening exhaust valve and just before closing it.

  • PDF

An Experimental Study on dte Performance of Plasma-DeNOx Catalyst widt Supplying Hydrocarbon Reductant (탄화수소 환원제 공급에 따른 플라즈마-DeNOx 촉매의 성능에 관한 실험적 연구)

  • Hur, Dong-Han;Min, Kyoung-Doug
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.1
    • /
    • pp.93-99
    • /
    • 2008
  • To improve the performance of plasma-DeNOx catalyst, a research on active system was performed experimentally. Two hydrocarbons, propane and diesel, were used as a reductant in this study. First, using propane, basic performances of plasma-DeNOx catalyst such as the effects of plasma and C/N ratio were measured at the various engine operating conditions. NOx conversion of catalyst was improved as plasma power or C/N ratio was increased. Next, diesel was injected in the exhaust gas flow as a reductant. The first test using diesel as a reductant is spray visualization in a high temperature flow and spray images were utilized for analysis of posterior test results. To evaluate the effect of an injection direction, it was compared with 6 installation methods of diesel injector due to THC concentrations at the inlet of plasma. From the results, injector was installed toward downstream direction below the pipe. Then, basic performances of plasma-DeNOx catalyst with various injection quantities were measured. As an injection quantity was increased, $NO_2$ conversion of plasma reactor was increased but NOx conversion of catalyst was nearly zero. This was because NOx conversion of catalyst had slowed as time goes by due to black particles which had been adhered to the catalyst.

DEVELOPMENT ON ENHANCED LEAKED FUEL RECIRCULATION DEVICE OF LPLi ENGINE TO SATISFY SULEV STANDARD

  • Myung, C.L.;Kwak, H.;Park, S.
    • International Journal of Automotive Technology
    • /
    • v.7 no.4
    • /
    • pp.407-413
    • /
    • 2006
  • The liquefied petroleum gas(LPG), mixture of propane and butane, has the potential to reduce toxic hydrocarbon emissions and inhibit ozone formation due to its chemical composition. Conventional mixer systems, however, have problems in meeting the future lower emission standards because of the difficulty in controlling air-fuel ratio precisely according to mileage tar accumulation. Liquid Phase LPG injection(LPLi) system has several advantages in more precise fuel metering and higher engine performance than those of the conventional mixer type. On the other hands, leakage problem of LPLi system at the injector tip is a main obstacle for meeting more stringent future emission regulations because these phenomena might cause excessive amount of THC emission during cold and hot restart phase. The main focus of this paper is the development of a leaked fuel recirculation system, which can eliminate the leaked fuel at the intake system with the activated carbon canister. Leaked fuel level was evaluated by using a fast response THC analyzer and gas chromatography. The result shows that THC concentration during cold and hot restart stage decreases by over 60%, and recirculation system is an effective method to meet the SULEV standard of the LPLi engine.

The Characteristics of Ozone Formation from a Gaseous Fueled SI Engine with Various Operating Parameters (여러 가지 운전조건에 따른 가스연료엔진 오존발생량 연구)

  • 김창업;강건용;배충식
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.6
    • /
    • pp.86-92
    • /
    • 2003
  • To analyze the characteristics of ozone formation, measurements of the concentrations of individual exhaust hydrocarbon species have been made under various engine operating parameters in a 2-liter 4-cylinder engine for natural gas and LPG. Tests were performed at constant engine speed, 1800 rpm for two compression ratios of 8.6 and 10.6, with various operating parameters, such as excess air ratio of 1.0~1.6, bmep of 250~800 na and spark timing of BTDC 10~$55^{\circ}$. It was found that the natural gas gave the less ozone formation than LPG in various operating conditions. This was accomplished by reducing the emissions of propylene($C_3H_6$), which has relatively high maximum incremental reactivity factor, and propane($C_3H_8$) that originally has large portion of LPG. In addition, the natural gas show lower values in the specific reactivity and brake specific reactivity. Higher compression ratio of the test engine showed higher non methane HC emissions. However, specific reactivity value decreased since fuel species of HC emissions increase. brake specific reactivity showed almost same values under high bmep, over 500kPa for both fuels. This means that the increase of non methane HC emissions and the decrease of specific reactivity with higher bmep affect each other simultaneously. With advanced spark timing, brake specific reactivity values of LPG were increased while those of natural gas showed almost constant values.

Measurement and Calculation of Bulk Modulus for DME (DME 체적탄성계수의 측정 및 계산)

  • Cho, Seung-Hwan;Lee, Beom-Ho;Lee, Dae-Yup
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.11
    • /
    • pp.841-848
    • /
    • 2008
  • DME(Di-methyl Ether) has been expected to be one of the promising alternative fuels for compression ignition engines due to its low emission characteristics for particulate matter. However, its physical properties such as density, bulk modulus and viscosity are not comparable to those of conventional diesel fuel. Especially, problems caused by low lubricity and high compressibility need to be understood more thoroughly, when a DME fuel is used for compression ignition engine, especially with mechanical fuel supply system. In this study, measurement and calculation of DME's bulk modulus were carried out over the range of temperatures from $-3^{\circ}C$ to $53^{\circ}C$, and pressures from 50 bar to 250 bar using an experimental apparatus built in this work. The results show that DME is prone to be compressed more easily compared to diesel fuel. A comparison of bulk modulus with butane and propane were also made in this work.

An Experimental Assessment of Combustion Stability of Coaxial Swirl Injectors and an Impinging Injector through Simulating Combustion Test (상압기상연소시험을 통한 동축형 스월 분사기와 충돌형 분사기의 연소 안정성 평가)

  • Park, Junhyeong;Kim, Hongjip
    • Journal of the Korean Society of Combustion
    • /
    • v.22 no.1
    • /
    • pp.46-52
    • /
    • 2017
  • High-frequency combustion instabilities may occur during the development of feasible engine combustors. These instabilities can result in irreparable damages to the wall of combustors or the degradation of engine performance. So, it is essential to identify injectors that have high stability characteristics during the early stages of development. The objective of present study was to assess the stability of coaxial injectors and an impinging injector with different recess lengths in order to develop stable injectors optimally. Stability margin was evaluated based on the distance from operating condition to the unstable regions. A simulating combustion test method was used to analyze the stability of injectors. A small-scale combustion chamber was designed to simulate the first tangential acoustic mode of the actual combustor. Gaseous oxygen and a mixture of methane and propane were used as simulant propellants to satisfy their flow similarity to the actual propellants of a combustor in a liquid rocket combustor. The results indicated that injectors having small recess lengths showed relatively large combustion stability margins. For the injectors of large recess lengths, instability regions with large and super-large amplitude oscillations were observed. Thus, injector with shorter recess lengths had a higher stability than that of longer one due to the different mixing processes.

A Study on Flame and Dynamic Characteristics of Injectors in Liquid Rocket Engine (액체로켓엔진 분사기의 화염 및 동적 특성 연구)

  • Song, Ju-Young;Lee, Kwang-Jin;Seo, Seong-Hyeon;Han, Yeoung-Min;Seol, Woo-Seok
    • 한국연소학회:학술대회논문집
    • /
    • 2004.11a
    • /
    • pp.141-145
    • /
    • 2004
  • The objective of the present study is to conduct model combustion tests for various injectors to identify their combustion stability characteristics. Three different double swirl coaxial injectors with variation of a recess length have been tested for the comparative study of CH flame structure and dynamic characteristics. Gaseous oxygen and mixture of gaseous methane and propane have been employed for simulating actual propellants used for a full-scale thrust chamber. Upon test results, the direct comparison between various types of injectors can be realized for the selection of the best design among prospective injectors.

  • PDF

An Experimental Study on the Performance Characteristics of a Hydrogen Fueled LPi Engine (LPi기관에서 수소첨가에 따른 성능특성에 관한 실험적연구)

  • Choi, Gyeung Ho
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.15 no.2
    • /
    • pp.129-136
    • /
    • 2004
  • 환경문제와 석유자원의 고갈이 많은 연구자들을 기존 탄화수소연료를 대체할수 있는 재생 가능한 연료를 구하는데 많은 노력을 기울이고 있다. 수소연료는 유해배기물질이 없는 연소와 또한 연소후에 재생 가능한 물성분만 배출하는 속성으로 미래의 청정에너지로 각광을 받고 있다. 이러한 이유로 수소연료는 수송기계의 연료로도 주목을 받고 있다. 따라서 수소연료기관 개발은 21세기에도 지속적으로 진행될 것이다. 이에대한 초기연구로 기체 LPG 연료가 아닌 액체 LPG 연료를 흡기관에 분사하여 기화된 LPG 연료를 엔진으로 흡입하는 LPi엔진에 수소연료를 과급하여 엔진에 성능을 연구하고자 하였다.

Development of a High Energy Ignition System Using Corona Discharge (코로나 방전을 이용한 고에너지 점화 시스템 개발)

  • Park, Kyongseok;Choi, Duwon;Kang, Hyehyun;Lee, Jonghwa;Park, Jinil
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.6
    • /
    • pp.650-655
    • /
    • 2015
  • A high energy ignition system is essential for lean burn or high EGR gasoline engine, which is getting more and more interest to improve fuel economy. The high energy ignition systems comprise plasma jet, laser beam, corona discharge and so on. In this study, a high energy ignition system using corona discharge is developed and tested in a constant volume combustion chamber. The developed system shows extension of lean limit of propane-air mixture and enhencement of combustion speed. Various shape of corona discharge plugs are also tested and compared in this study.