• Title/Summary/Keyword: propagation effects

Search Result 1,158, Processing Time 0.03 seconds

A Study on the Measurements of Beam Wave Propagation and Fluorescence Spectroscopy in Particles Media (입자매질에서 빔파동전파와 형광분광 측정에 관한 연구)

  • Kim, Ki-Jun;Lee, Jou-Youb;Sung, Wan-Mo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.31 no.2
    • /
    • pp.167-175
    • /
    • 2014
  • The influences of fluorescence, scattering, and flocculation in turbid material were interpreted for the scattered fluorescence intensity and wavelength, it has been studied the molecular properties by the spectroscopy of laser induced fluorescence(LIF). The effects of optical properties in scattering media have been found by the optical parameters(${\mu}_s$, ${\mu}_a$, ${\mu}_t$). Flocculation is an important step in many solid-liquid separation processes and is widely used in Photodynamic therapy. The interactions of several colloid particles can come into play which have major effect on the flocculation and LIF process. We measured scattering and fluorescence spectra of the sample for in vitro as function of concentration from lase source to detector. The value of scattering coefficient ${\mu}_s$ is large by means of the increasing particles of scatterer. Therefore, Phorphyrin A is larger than Phorphyrin C in scattering intensity ${\mu}_s$, but Phorphyrin A is smaller than Phorphyrin C in penetration depth ${\delta}$.

Effect of electrolyte composition on Cu thin film by electroplating (전해액 조성이 전기도금으로 제작된 구리박막의 특성에 미치는 영향)

  • Song, Yoo-Jin;Seo, Jung-Hye;Lee, Youn-Seoung;Yeom, Kee-Soo;Ryu, Young-Ho;Hong, Ki-Min
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.10a
    • /
    • pp.95-99
    • /
    • 2008
  • Cu has been used for metallic interconnects in ULSI applications because of its lower resistivity according to the scaling down of semiconductor devices. The resistivity of Cu lines will affect the RC delay and will limit signal propagation in integrated circuits. We investigated the electrolyte effects of the electroplating solution in the resistivity value of Cu films grown by electroplating deposition (EPD). The resistivity was measured with a four-point probe and the material properties were investigated with XRD (X-ray Diffraction), AFM (Atomic Force Microscope), FE-SEM (Field Emission Scanning Electron Microscope) and XPS (X-ray Photoelectron Spectroscopy). From these experimental results, we found that the electrolyte condition plays an Important role in formation of Cu film with lower resistivity by EPD.

  • PDF

The Influence of Dynamic Strain Aging on Tensile and LCF Properties of Prior Cold Worked 316L Stainless Steel (냉간가공된 316L 스테인리스 강의 인장 및 저주기 피로 물성치에 미치는 동적변형시효의 영향)

  • Hong, Seong-Gu;Lee, Soon-Bok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.8
    • /
    • pp.1398-1408
    • /
    • 2003
  • Tensile and LCF(low cycle fatigue) tests were carried out in air at wide temperature range 20$^{\circ}C$-750$^{\circ}C$ and strain rates of 1${\times}$10$\^$-4//s-1${\times}$10$\^$-2/ to ascertain the influence of strain rate on tensile and LCF properties of prior cold worked 316L stainless steel, especially focused on the DSA(dynamic strain aging) regime. Dynamic strain aging induced the change of tensile properties such as strength and ductility in the temperature region 250$^{\circ}C$-600$^{\circ}C$ and this temperature region well coincided with the negative strain rate sensitivity regime. Cyclic stress response at all test conditions was characterized by the initial hardening during a few cycles, followed by gradual softening until final failure. Temperature and strain rate dependence on cyclic softening behavior appears to result from the change of the cyclic plastic deformation mechanism and DSA effect. The DSA regimes between tensile and LCF loading conditions in terms of the negative strain rate sensitivity were well consistent with each other. The drastic reduction in fatigue resistance at elevated temperature was observed, and it was attributed to the effects of oxidation, creep and dynamic strain aging or interactions among them. Especially, in the DSA regime, dynamic strain aging accelerated the reduction of fatigue resistance by enhancing crack initiation and propagation.

Applicability of Permeable Submerged Breakwater for Discharged Flow Control (방류 흐름제어를 위한 투과성 잠제의 적용성 분석)

  • Hur, Dong-Soo;Lee, Woo-Dong
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.1
    • /
    • pp.51-60
    • /
    • 2016
  • The purpose of this study is to examine the control function of discharged flow due to the shape and plane arrangement of permeable submerged breakwater. For the discussion on it in detail, 3-dimensional numerical model based on PBM (Porous Body Model), which is able to simulate directly interaction of Fluid Permeable structure Seabed has been used to simulate water discharge in a NWT (Numerical Water Tank). To verify the applicability, LES-WASS-3D is analyzed comparing to the experimental result about propagation characteristics of dam-break wave through a permeable structure. Using the results obtained from numerical simulation, the effects of the shape and plane arrangement of submerged breakwater on reducing velocity and flow induction have been discussed related to the mean flow distribution and vertical distributions of horizontal velocities around ones.

Etching characteristics of Al-Nd alloy thin films using magnetized inductively coupled plasma

  • Lee, Y.J.;Han, H.R.;Yeom, G.Y.
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 1999.10a
    • /
    • pp.56-56
    • /
    • 1999
  • For advanced TFT-LCD manufacturing processes, dry etching of thin-film layers(a-Si, $SiN_x$, SID & gate electrodes, ITO etc.) is increasingly preferred instead of conventional wet etching processes. To dry etch Al gate electrode which is advantageous for reducing propagation delay time of scan signals, high etch rate, slope angle control, and etch uniformity are required. For the Al gate electrode, some metals such as Ti and Nd are added in Al to prevent hillocks during post-annealing processes in addition to gaining low-resistivity($<10u{\Omega}{\cdot}cm$), high performance to heat tolerance and corrosion tolerance of Al thin films. In the case of AI-Nd alloy films, however, low etch rate and poor selectivity over photoresist are remained as a problem. In this study, to enhance the etch rates together with etch uniformity of AI-Nd alloys, magnetized inductively coupled plasma(MICP) have been used instead of conventional ICP and the effects of various magnets and processes conditions have been studied. MICP was consisted of fourteen pairs of permanent magnets arranged along the inside of chamber wall and also a Helmholtz type axial electromagnets was located outside the chamber. Gas combinations of $Cl_2,{\;}BCl_3$, and HBr were used with pressures between 5mTorr and 30mTorr, rf-bias voltages from -50Vto -200V, and inductive powers from 400W to 800W. In the case of $Cl_2/BCl_3$ plasma chemistry, the etch rate of AI-Nd films and etch selectivity over photoresist increased with $BCl_3$ rich etch chemistries for both with and without the magnets. The highest etch rate of $1,000{\AA}/min$, however, could be obtained with the magnets(both the multi-dipole magnets and the electromagnets). Under an optimized electromagnetic strength, etch uniformity of less than 5% also could be obtained under the above conditions.

  • PDF

Crack Width Prediction in Concrete Bridges Considering Bond Resistances affected by Corrosion (부식에 의한 부착저항감소를 고려한 콘크리트 교량의 균열폭 예측)

  • Cho, Tae-Jun;Cho, Hyo-Nam;Park, Mi-Yun
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.4 s.94
    • /
    • pp.543-552
    • /
    • 2006
  • The current design for crack width control in concrete bridges is incomplete in analytical models. As one of the important serviceability limit states, the crack width be considered with the quantitative prediction of the initiation and propagation of corrosion and corrosion-induced cracking. A serviceability limit state of cracking can be affected by the combined effects of bond, slip, cracking, and corrosion of the reinforcing elements. Considering life span of concrete bridges, an improved prediction of crack width affected by time-dependent general corrosion has been proposed for the crack control design. The developed corrosion models and crack width prediction equation can be used for the design and the maintenance of prestressed and non-prestressed reinforcements by varying time, w/c, cover depth, and geometries of the sections. It can also be used as the rational criteria for the maintenance of existing concrete bridges and the prediction of remaining life of concrete structures.

Analysis of Parameters to Influence on Rock Fragmentation in Bench Blasting (벤치발파에서 암석 파쇄도에 영향을 미치는 요인 분석)

  • 최용근;이정인;이정상;김장순
    • Explosives and Blasting
    • /
    • v.22 no.3
    • /
    • pp.1-12
    • /
    • 2004
  • In bench blasting, rock fragmentation is one of the most important factors determining productivity. Rock fragmentation could be affected by various conditions and these were hewn that rock joint conditions and in-situ block sizes were the biggest effect on it. This research is focused on what or how to influence on rock fragmentation according to relation between blasting conditions and the in-situ rock conditions such as rock joint conditions and in-situ block size. Field measurements were carried out in 3 open pit limestone mines, where in-situ rock conditions and blasting conditions were fully investigated. The results show that the parameters interact with blasting conditions complicatedly and especially in-situ block size has bigger effects. Dip direction of major joint set also can affect on fragmentation. Mean fragment size become smallest when dip direction of major joint set is about $30^{\circ}$ with the bench direction. The reason is considered to be come from difference of propagation paths of elastic wave.

강용접부의 표면균열 성장거동에 관한 연구 1

  • 정세희;박재규;이종기
    • Journal of Welding and Joining
    • /
    • v.6 no.2
    • /
    • pp.30-39
    • /
    • 1988
  • Generally, as the welded region of weld structures has the incomplete bead and welded deposit which are able to behave like the surface cracks occasinally, there is a high possibility that the fatigue fracture of the weld structures is due to the surface cracks on the wlded region. This study was done to investigate the effects of post weld heat treatment (PWHT) on the fatigue behaviors of the surface crack of the heat affected zone (HAZ) for the multi-pass welds under the repetitive pure bending moment. The obtained results are summarized as follows : 1. The crack grows to the depth direction initially as the number of cylces increase, the amount of crack length is increased for the surface dir3ction and cive versa for the depth direction. 2. The fatigue life is increased in a order of as weld, PWHT specimens and parent. 3. As the number of cycles increase, the crack length is increased to th surface direction. The increase of the depth length is blunted at the center of specimen thickness. 4. The fatigue crack growth of PWHT specimens to the surface direction is dependent upon the holding time and applied stress during PWHT. In order words, the crack growth rate decreases with the holding time and increases with the applied stress during PWHT. 5. As the crack grows, the aspect formed in the course of crack propagation approaches to semicircle for parent and ellipse with the largest semidiameter for PWHT ($1/4hr, 15kgf/mm^2$) 6. At depth direction, it is difficult to apply to the paris' equation because of the scattered data between the crack growth rate and the stress intensity factor range.

  • PDF

Adventitious Root Cultures of Panax ginseng C.V. Meyer and Ginsenoside Production through Large-Scale Bioreactor System

  • Hahn, Eun-Joo;Kim, Yun-Soo;Yu, Kee-Won;Jeong, Cheol-Seung;Paek, Kee-Yoeup
    • Journal of Plant Biotechnology
    • /
    • v.5 no.1
    • /
    • pp.1-6
    • /
    • 2003
  • The adventitious root of Panax ginseng C.A. Meyer is regarded as an efficient alternative to cell culture or hairy root culture for biomass production due to its fast growth and stable metabolite production. To determine optimal culture conditions for the bioreactor culture of ginseng roots, experiments have been conducted on physical and chemical factors such as bioreactor type, dissolved oxygen, gas supply, aeration, medium type, macro- and micro-elements, medium supplement during culture period, sucrose concentration, osmotic agents, medium pH and light. Elicitation is a key step to increase ginsenoside accumulation in the adventitious roots but biomass growth is severely inhibited by elicitor treatment. To obtain high ginsenoside content with avoiding biomass decrease, we applied two-stage bioreactor culture system. Ginseng adventitious roots were cultured for 40 days to maximize biomass increase followed by elicitation for 7 days to enhance ginsenoside accumulation. We also experimented on types and concentrations of jasmonate to determine optimal elicitation methods. In this paper, we discussed several factors affecting the root propagation and ginsenoside accumulation. Based on the results obtained from previous experiments we have established large-scale bioreactor system (1 ton-10 ton) for the efficient production of ginseng adventitious roots and bioactive compounds including ginsenoside. Still, experiments are on going in our laboratory to determine other bioactive compounds having effects on diet, high blood pressure, DPPH elimination and increasing memories.

Effects of Needle Response on Spray Characteristics In High Pressure Injector Driven by Piezo Actuator for Common-Rail Injection System

  • Lee Jin Wook;Min Kyoung Doug
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.5
    • /
    • pp.1194-1205
    • /
    • 2005
  • The common-rail injection systems, as a new diesel injection system for passenger car, have more degrees of freedom in controlling both the injection timing and injection rate with the high pressure. In this study, a piezo-driven injector was applied to a high pressure common-rail type fuel injection system for the control capability of the high pressure injector's needle and firstly examined the piezo-electric characteristics of a piezo-driven injector. Also in order to analyze the effect of injector's needle response driven by different driving method on the injection, we investigated the diesel spray characteristics in a constant volume chamber pressurized by nitrogen gas for two injectors, a solenoid-driven injector and a piezo-driven injector, both equipped with the same injection nozzle with sac type and 5-injection hole. The experimental method for spray visualization was based on back-light photography technique by utilizing a high speed framing camera. The macroscopic spray propagation was geometrically measured and characterized in term of the spray tip penetration, spray cone angle and spray tip speed. For the evaluation of the needle response of the above two injectors, we indirectly estimated the needle's behavior with an accelerometer and injection rate measurement employing Bosch's method was conducted. The experimental results show that the spray tip penetrations of piezo­driven injector were longer, on the whole, than that of the solenoid-driven injector. Besides we found that the piezo-driven injector have a higher injection flow rate by a fast needle response and it was possible to control the injection rate slope in piezo-driven injector by altering the induced current.